R语言之-caret包应用

caret包应用之一:数据预处理

在进行数据挖掘时,我们会用到R中的很多扩展包,各自有不同的函数和功能。如果能将它们综合起来应用就会很方便。caret包(Classification and Regression Training)就是为了解决分类和回归问题的数据训练而创建的一个综合工具包。下面的例子围绕数据挖掘的几个核心步骤来说明其应用。

本例涉及到的数据是一个医学实验数据,载入数据之后可以发现其样本数为528,自变量数为342,mdrrDescr为自变量数据框,mdrrClass为因变量。

library(caret)
data(mdrr)

本例的样本数据所涉及到的变量非常多,需要对变量进行初步降维。其中一种需要删除的变量是常数自变量,或者是方差极小的自变量,对应的命令是nearZeroVar,可以看到新数据集的自变量减少到了297个。

zerovar=nearZeroVar(mdrrDescr)
newdata1=mdrrDescr[,-zerovar]

另一类需要删除的是与其它自变量有很强相关性的变量,对应的命令是findcorrelation。自变量中还有可能存在多重共线性问题,可以用findLinearCombos命令将它们找出来。这样处理后自变量减少为94个。

descrCorr = cor(newdata1)
highCorr = findCorrelation(descrCorr, 0.90)
newdata2 = newdata1[, -highCorr]
comboInfo = findLinearCombos(newdata2)
ne

你可能感兴趣的:(R语言,r语言,数据挖掘,机器学习)