数据库查询速度优化技巧及解决方案

今天跟大家分享一篇刚哥写的关于数据库优化的文章,这篇文章会教会你面对问题解决的方法,真是很实用,这可是刚哥的经验之谈,感觉不错就分享给你的小伙伴吧!

原因分析

主要原因1:后台数据库中的数据过多,没做数据优化导致后台查询数据很慢

次要原因2:前端数据请求-解析-展示过程处理不当

次要原因3:网络问题所致

那么我们应该怎么做后台数据优化呢?

解决问题

这里总结了几种方案,如何提高数据库查询的速度,大家参考.

1、缓存,在持久层或持久层之上做缓存

使用ehcache缓存,这个一般用于持久层的缓存,提供持久层、业务层的快速缓存,hibenate默认使用的二级缓存就是ehcache;

2、数据库表的大字段剥离

假如一个表的字段数有100多个,学会拆分字段,保证单条记录的数据量很小;

3、恰当地使用索引

必要时建立多级索引,分析MySQL的执行计划,通过表数据统计等方式协助数据库走正确的查询方式,该走索引就走索引,该走全表扫描就走全表扫描;

4、表的拆分

表分区和拆分,无论是业务逻辑上的拆分(如一个月一张报表、分库)还是无业务含义的分区(如根据ID取模分区);

5、字段冗余

减少跨库查询和大表连接操作;,数据通过单个或多个JOB生成出来,减少实时查询;

6、从磁盘上做文章

数据存放的在磁盘的内、外磁道上,数据获取的效率都是不一样的;

7、放弃关系数据库的某些特性

引入NoSQL数据库;

换种思路存放数据,例如搜索中的倒排表;

 

干货如下:

1.字段适当添加索引,索引尽量添加数据唯一或是该字段数据量小的字段上

2.where条件中减少null判断

3.避免使用 <> 和 != 操作符

4.条件中的 or 使用union all 来代替

5.尽量少用in / not in / between and,都会导致权标扫描

6.使用exists() 代替 in()

 

索引添加方法:

1.索引尽量添加数据唯一或是该字段数据量小的字段上

2.过多的索引会降低insert和update的效率


转自:https://www.jianshu.com/p/fea61b518dc4

 

你可能感兴趣的:(mysql,sql,nosql,sqlite)