三层神经网络的输出公式,神经网络梯度公式推导

神经网络BP模型

一、BP模型概述误差逆传播(ErrorBack-Propagation)神经网络模型简称为BP(Back-Propagation)网络模型。

PallWerbas博士于1974年在他的博士论文中提出了误差逆传播学习算法。完整提出并被广泛接受误差逆传播学习算法的是以Rumelhart和McCelland为首的科学家小组。

他们在1986年出版“ParallelDistributedProcessing,ExplorationsintheMicrostructureofCognition”(《并行分布信息处理》)一书中,对误差逆传播学习算法进行了详尽的分析与介绍,并对这一算法的潜在能力进行了深入探讨。

BP网络是一种具有3层或3层以上的阶层型神经网络。上、下层之间各神经元实现全连接,即下层的每一个神经元与上层的每一个神经元都实现权连接,而每一层各神经元之间无连接。

网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,神经元的激活值从输入层经各隐含层向输出层传播,在输出层的各神经元获得网络的输入响应。

在这之后,按减小期望输出与实际输出的误差的方向,从输入层经各隐含层逐层修正各连接权,最后回到输入层,故得名“误差逆传播学习算法”。

随着这种误差逆传播修正的不断进行,网络对输入模式响应的正确率也不断提高。

BP网络主要应用于以下几个方面:1)函数逼近:用输入模式与相应的期望输出模式学习一个网络逼近一个函数;2)模式识别:用一个特定的期望输出模式将它与输入模式联系起来;3)分类:把输入模式以所定义的合适方式进行分类;4)数据压缩:减少输出矢量的维数以便于传输或存储。

在人工神经网络的实际应用中,80%~90%的人工神经网络模型采用BP网络或它的变化形式,它也是前向网络的核心部分,体现了人工神经网络最精华的部分。

二、BP模型原理下面以三层BP网络为例,说明学习和应用的原理。

1.数据定义P对学习模式(xp,dp),p=1,2,…,P;输入模式矩阵X[N][P]=(x1,x2,…,xP);目标模式矩阵d[M][P]=(d1,d2,…,dP)。

三层BP网络结构输入层神经元节点数S0=N,i=1,2,…,S0;隐含层神经元节点数S1,j=1,2,…,S1;神经元激活函数f1[S1];权值矩阵W1[S1][S0];偏差向量b1[S1]。

输出层神经元节点数S2=M,k=1,2,…,S2;神经元激活函数f2[S2];权值矩阵W2[S2][S1];偏差向量b2[S2]。

学习参数目标误差ϵ;初始权更新值Δ0;最大权更新值Δmax;权更新值增大倍数η+;权更新值减小倍数η-。

2.误差函数定义对第p个输入模式的误差的计算公式为中国矿产资源评价新技术与评价新模型y2kp为BP网的计算输出。

3.BP网络学习公式推导BP网络学习公式推导的指导思想是,对网络的权值W、偏差b修正,使误差函数沿负梯度方向下降,直到网络输出误差精度达到目标精度要求,学习结束。

各层输出计算公式输入层y0i=xi,i=1,2,…,S0;隐含层中国矿产资源评价新技术与评价新模型y1j=f1(z1j),j=1,2,…,S1;输出层中国矿产资源评价新技术与评价新模型y2k=f2(z2k),k=1,2,…,S2。

输出节点的误差公式中国矿产资源评价新技术与评价新模型对输出层节点的梯度公式推导中国矿产资源评价新技术与评价新模型E是多个y2m的函数,但只有一个y2k与wkj有关,各y2m间相互独立。

其中中国矿产资源评价新技术与评价新模型则中国矿产资源评价新技术与评价新模型设输出层节点误差为δ2k=(dk-y2k)·f2′(z2k),则中国矿产资源评价新技术与评价新模型同理可得中国矿产资源评价新技术与评价新模型对隐含层节点的梯度公式推导中国矿产资源评价新技术与评价新模型E是多个y2k的函数,针对某一个w1ji,对应一个y1j,它与所有的y2k有关。

因此,上式只存在对k的求和,其中中国矿产资源评价新技术与评价新模型则中国矿产资源评价新技术与评价新模型设隐含层节点误差为中国矿产资源评价新技术与评价新模型则中国矿产资源评价新技术与评价新模型同理可得中国矿产资源评价新技术与评价新模型4.采用弹性BP算法(RPROP)计算权值W、偏差b的修正值ΔW,Δb1993年德国MartinRiedmiller和HeinrichBraun在他们的论文“ADirectAdaptiveMethodforFasterBackpropagationLearning:TheRPROPAlgorithm”中,提出ResilientBackpropagation算法——弹性BP算法(RPROP)。

这种方法试图消除梯度的大小对权步的有害影响,因此,只有梯度的符号被认为表示权更新的方向。

权改变的大小仅仅由权专门的“更新值”确定中国矿产资源评价新技术与评价新模型其中表示在模式集的所有模式(批学习)上求和的梯度信息,(t)表示t时刻或第t次学习。

权更新遵循规则:如果导数是正(增加误差),这个权由它的更新值减少。如果导数是负,更新值增加。中国矿产资源评价新技术与评价新模型RPROP算法是根据局部梯度信息实现权步的直接修改。

对于每个权,我们引入它的各自的更新值,它独自确定权更新值的大小。

这是基于符号相关的自适应过程,它基于在误差函数E上的局部梯度信息,按照以下的学习规则更新中国矿产资源评价新技术与评价新模型其中0<η-<1<η+。

在每个时刻,如果目标函数的梯度改变它的符号,它表示最后的更新太大,更新值应由权更新值减小倍数因子η-得到减少;如果目标函数的梯度保持它的符号,更新值应由权更新值增大倍数因子η+得到增大。

为了减少自由地可调参数的数目,增大倍数因子η+和减小倍数因子η–被设置到固定值η+=1.2,η-=0.5,这两个值在大量的实践中得到了很好的效果。

RPROP算法采用了两个参数:初始权更新值Δ0和最大权更新值Δmax当学习开始时,所有的更新值被设置为初始值Δ0,因为它直接确定了前面权步的大小,它应该按照权自身的初值进行选择,例如,Δ0=0.1(默认设置)。

为了使权不至于变得太大,设置最大权更新值限制Δmax,默认上界设置为Δmax=50.0。在很多实验中,发现通过设置最大权更新值Δmax到相当小的值,例如Δmax=1.0。

我们可能达到误差减小的平滑性能。5.计算修正权值W、偏差b第t次学习,权值W、偏差b的的修正公式W(t)=W(t-1)+ΔW(t),b(t)=b(t-1)+Δb(t),其中,t为学习次数。

6.BP网络学习成功结束条件每次学习累积误差平方和中国矿产资源评价新技术与评价新模型每次学习平均误差中国矿产资源评价新技术与评价新模型当平均误差MSE<ε,BP网络学习成功结束。

7.BP网络应用预测在应用BP网络时,提供网络输入给输入层,应用给定的BP网络及BP网络学习得到的权值W、偏差b,网络输入经过从输入层经各隐含层向输出层的“顺传播”过程,计算出BP网的预测输出。

8.神经元激活函数f线性函数f(x)=x,f′(x)=1,f(x)的输入范围(-∞,+∞),输出范围(-∞,+∞)。一般用于输出层,可使网络输出任何值。

S型函数S(x)中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围(0,1)。f′(x)=f(x)[1-f(x)],f′(x)的输入范围(-∞,+∞),输出范围(0,]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(0,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

在用于模式识别时,可用于输出层,产生逼近于0或1的二值输出。双曲正切S型函数中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围(-1,1)。

f′(x)=1-f(x)·f(x),f′(x)的输入范围(-∞,+∞),输出范围(0,1]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(-1,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

阶梯函数类型1中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围{0,1}。f′(x)=0。

类型2中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围{-1,1}。f′(x)=0。

斜坡函数类型1中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围[0,1]。中国矿产资源评价新技术与评价新模型f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

类型2中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围[-1,1]。中国矿产资源评价新技术与评价新模型f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

三、总体算法1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];(2)计算输入模式X[N][P]各个变量的最大值,最小值矩阵Xmax[N],Xmin[N];(3)隐含层的权值W1,偏差b1初始化。

情形1:隐含层激活函数f()都是双曲正切S型函数1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];2)计算输入模式X的每个变量的范围均值向量Xmid[N];3)计算W,b的幅度因子Wmag;4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];6)计算W[S1][S0],b[S1];7)计算隐含层的初始化权值W1[S1][S0];8)计算隐含层的初始化偏差b1[S1];9))输出W1[S1][S0],b1[S1]。

情形2:隐含层激活函数f()都是S型函数1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];2)计算输入模式X的每个变量的范围均值向量Xmid[N];3)计算W,b的幅度因子Wmag;4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];6)计算W[S1][S0],b[S1];7)计算隐含层的初始化权值W1[S1][S0];8)计算隐含层的初始化偏差b1[S1];9)输出W1[S1][S0],b1[S1]。

情形3:隐含层激活函数f()为其他函数的情形1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];2)计算输入模式X的每个变量的范围均值向量Xmid[N];3)计算W,b的幅度因子Wmag;4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];6)计算W[S1][S0],b[S1];7)计算隐含层的初始化权值W1[S1][S0];8)计算隐含层的初始化偏差b1[S1];9)输出W1[S1][S0],b1[S1]。

(4)输出层的权值W2,偏差b2初始化1)产生[-1,1]之间均匀分布的S2×S1维随机数矩阵W2[S2][S1];2)产生[-1,1]之间均匀分布的S2×1维随机数矩阵b2[S2];3)输出W2[S2][S1],b2[S2]。

2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)(1)输入参数P对模式(xp,dp),p=1,2,…,P;三层BP网络结构;学习参数。

(2)学习初始化1);2)各层W,b的梯度值,初始化为零矩阵。

(3)由输入模式X求第一次学习各层输出y0,y1,y2及第一次学习平均误差MSE(4)进入学习循环epoch=1(5)判断每次学习误差是否达到目标误差要求如果MSE<ϵ,则,跳出epoch循环,转到(12)。

(6)保存第epoch-1次学习产生的各层W,b的梯度值,(7)求第epoch次学习各层W,b的梯度值,1)求各层误差反向传播值δ;2)求第p次各层W,b的梯度值,;3)求p=1,2,…,P次模式产生的W,b的梯度值,的累加。

(8)如果epoch=1,则将第epoch-1次学习的各层W,b的梯度值,设为第epoch次学习产生的各层W,b的梯度值,。

(9)求各层W,b的更新1)求权更新值Δij更新;2)求W,b的权更新值,;3)求第epoch次学习修正后的各层W,b。

(10)用修正后各层W、b,由X求第epoch次学习各层输出y0,y1,y2及第epoch次学习误差MSE(11)epoch=epoch+1,如果epoch≤MAX_EPOCH,转到(5);否则,转到(12)。

(12)输出处理1)如果MSE<ε,则学习达到目标误差要求,输出W1,b1,W2,b2。2)如果MSE≥ε,则学习没有达到目标误差要求,再次学习。

(13)结束3.三层BP网络(含输入层,隐含层,输出层)预测总体算法首先应用Train3lBP_RPROP()学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b,然后应用三层BP网络(含输入层,隐含层,输出层)预测。

函数:Simu3lBP()。1)输入参数:P个需预测的输入数据向量xp,p=1,2,…,P;三层BP网络结构;学习得到的各层权值W、偏差b。

2)计算P个需预测的输入数据向量xp(p=1,2,…,P)的网络输出y2[S2][P],输出预测结果y2[S2][P]。四、总体算法流程图BP网络总体算法流程图见附图2。

五、数据流图BP网数据流图见附图1。

六、实例实例一全国铜矿化探异常数据BP模型分类1.全国铜矿化探异常数据准备在全国铜矿化探数据上用稳健统计学方法选取铜异常下限值33.1,生成全国铜矿化探异常数据。

2.模型数据准备根据全国铜矿化探异常数据,选取7类33个矿点的化探数据作为模型数据。

这7类分别是岩浆岩型铜矿、斑岩型铜矿、矽卡岩型、海相火山型铜矿、陆相火山型铜矿、受变质型铜矿、海相沉积型铜矿,另添加了一类没有铜异常的模型(表8-1)。3.测试数据准备全国化探数据作为测试数据集。

4.BP网络结构隐层数2,输入层到输出层向量维数分别为14,9、5、1。学习率设置为0.9,系统误差1e-5。没有动量项。表8-1模型数据表续表5.计算结果图如图8-2、图8-3。

图8-2图8-3全国铜矿矿床类型BP模型分类示意图实例二全国金矿矿石量品位数据BP模型分类1.模型数据准备根据全国金矿储量品位数据,选取4类34个矿床数据作为模型数据,这4类分别是绿岩型金矿、与中酸性浸入岩有关的热液型金矿、微细浸染型型金矿、火山热液型金矿(表8-2)。

2.测试数据准备模型样本点和部分金矿点金属量、矿石量、品位数据作为测试数据集。3.BP网络结构输入层为三维,隐层1层,隐层为三维,输出层为四维,学习率设置为0.8,系统误差1e-4,迭代次数5000。

表8-2模型数据4.计算结果结果见表8-3、8-4。表8-3训练学习结果表8-4预测结果(部分)续表。

谷歌人工智能写作项目:神经网络伪原创

如何理解神经网络里面的反向传播算法

反向传播算法(Backpropagation)是目前用来训练人工神经网络(ArtificialNeuralNetwork,ANN)的最常用且最有效的算法AI爱发猫

其主要思想是:(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;(2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;(3)在反向传播的过程中,根据误差调整各种参数的值;不断迭代上述过程,直至收敛。

反向传播算法的思想比较容易理解,但具体的公式则要一步步推导,因此本文着重介绍公式的推导过程。1.变量定义上图是一个三层人工神经网络,layer1至layer3分别是输入层、隐藏层和输出层。

如图,先定义一些变量:表示第层的第个神经元连接到第层的第个神经元的权重;表示第层的第个神经元的偏置;表示第层的第个神经元的输入,即:表示第层的第个神经元的输出,即:其中表示激活函数。

2.代价函数代价函数被用来计算ANN输出值与实际值之间的误差。

常用的代价函数是二次代价函数(Quadraticcostfunction):其中,表示输入的样本,表示实际的分类,表示预测的输出,表示神经网络的最大层数。

3.公式及其推导本节将介绍反向传播算法用到的4个公式,并进行推导。如果不想了解公式推导过程,请直接看第4节的算法步骤。

首先,将第层第个神经元中产生的错误(即实际值与预测值之间的误差)定义为:本文将以一个输入样本为例进行说明,此时代价函数表示为:公式1(计算最后一层神经网络产生的错误):其中,表示Hadamard乘积,用于矩阵或向量之间点对点的乘法运算。

公式1的推导过程如下:公式2(由后往前,计算每一层神经网络产生的错误):推导过程:公式3(计算权重的梯度):推导过程:公式4(计算偏置的梯度):推导过程:4.反向传播算法伪代码输入训练集对于训练集中的每个样本x,设置输入层(Inputlayer)对应的激活值:前向传播:,计算输出层产生的错误:反向传播错误:

神经网络自整定PID真的有效吗?我看图书馆的参考书上和知网论文上的方法,感觉推导过程都不对啊?

楼主的这个问题已经是六年前的问题了(今天2021年5月),不知道楼主现在还关注这个话题不?神经网络自整定PID肯定是有效的。

目前,神经网络自整定PID主要面临三个问题:一是初值选择的问题,不合理的初值很容易使闭环系统不稳定;二是神经网络自整定PID自身需要人为设定的参数较多,PID控制自身只需要三个人为设定参数,神经网络自整定PID则需要四个(三个初值和一个学习因子),这使得神经网络自整定PID比传统PID算法还要麻烦;三是缺乏完整的理论稳定性证明,神经网络自整定PID在线更新规则早已稳定,并且被广泛引用和应用,而基于神经网络自整定PID的闭环系统稳定性证明一直没有得到很好的解决,某种程度上,这限制了神经网络自整定PID的推广。

我个人也做了一些这样的研究,感兴趣的话可以参考我的一篇期刊论文。

Data-DrivenTrackingControlBasedonLMandPIDNeuralNetworkwithRelayFeedbackforDiscreteNonlinearSystems。

偏导数怎么看谁是变量谁是常量?

深度学习是一个不断磨合的过程就像谈恋爱一样如果在这个人工智能的时代,作为一个有理想抱负的程序员,或者学生、爱好者,不懂深度学习这个超热的话题,似乎已经跟时代脱节了。

但是,深度学习对数学的要求,包括微积分、线性代数和概率论与数理统计等,让大部分的有理想抱负青年踟蹰前行。那么问题来了,理解深度学习,到底需不需要这些知识?

关于深度学习,网上的资料很多,不过大部分都不太适合初学者。总结了几个原因:深度学习确实需要一定的数学基础。如果不用深入浅出地方法讲,有些读者就会有畏难的情绪,因而容易过早地放弃。

中国人或美国人写的书籍或文章,普遍比较难。深度学习所需要的数学基础并没有想象中的那么难,只需要知道导数和相关的函数概念即可。

假如你高等数学也没学过,很好,这篇文章其实是想让文科生也能看懂,只需要学过初中数学。“王小二卖猪”解读深度学习之导数导数是什么?

无非就是变化率,比如:王小二今年卖了100头猪,去年卖了90头,前年卖了80头。。。变化率或者增长率是什么?每年增长10头猪,多简单。这里需要注意有个时间变量---年。

王小二卖猪的增长率是10头/年,也就是说,导数是10。

函数y=f(x)=10x+30,这里我们假设王小二第一年卖了30头,以后每年增长10头,x代表时间(年),y代表猪的头数。

当然,这是增长率固定的情形,而现实生活中,很多时候,变化量也不是固定的,也就是说增长率不是恒定的。

比如,函数可能是这样:y=f(x)=5x+30,这里x和y依然代表的是时间和头数,不过增长率变了,怎么算这个增长率,我们回头再讲。或者你干脆记住几个求导的公式也可以。

深度学习还有一个重要的数学概念:偏导数偏导数的偏怎么理解?偏头疼的偏,还是我不让你导,你偏要导?

都不是,我们还以王小二卖猪为例,刚才我们讲到,x变量是时间(年),可是卖出去的猪,不光跟时间有关啊,随着业务的增长,王小二不仅扩大了养猪场,还雇了很多员工一起养猪。

所以方程式又变了:y=f(x)=5x+8x+35x+30这里x代表面积,x代表员工数,当然x还是时间。

以撩妹为例,解读深度学习之“偏导数”偏导数是什么偏导数无非就是多个变量的时候,针对某个变量的变化率。在上面的公式里,如果针对x求偏导数,也就是说,员工对于猪的增长率贡献有多大。

或者说,随着(每个)员工的增长,猪增加了多少,这里等于35---每增加一个员工,就多卖出去35头猪。

计算偏导数的时候,其他变量都可以看成常量,这点很重要,常量的变化率为0,所以导数为0,所以就剩对35x求导数,等于35。对于x求偏导,也是类似的。

求偏导,我们用一个符号表示:比如y/x就表示y对x求偏导。废话半天,这些跟深度学习到底有啥关系?当然有关系,深度学习是采用神经网络,用于解决线性不可分的问题。

这里我主要讲讲数学与深度学习的关系。

先给大家看几张图:图1:所谓深度学习,就是具有很多个隐层的神经网络图2:单输出的时候,怎么求偏导数图3:多输出的时候,怎么求偏导数后面两张图是日本人写的关于深度学习的书里面的两张图片。

所谓入力层,出力层,中间层,分别对应于中文的:输入层,输出层,和隐层。大家不要被这几张图吓着,其实很简单,就以撩妹为例。男女恋爱我们大致可以分为三个阶段:初恋期。相当于深度学习的输入层。

别人吸引你,肯定是有很多因素,比如:身高,身材,脸蛋,学历,性格等等,这些都是输入层的参数,对每个人来说权重可能都不一样。热恋期。我们就让它对应隐层吧!这个期间,双方各种磨合,柴米油盐酱醋茶。稳定期。

对应输出层,是否合适,就看磨合得咋样了。大家都知道,磨合很重要,怎么磨合呢?就是不断学习训练和修正的过程!

比如女朋友喜欢草莓蛋糕,你买了蓝莓的,她的反馈是negative,你下次就别买了蓝莓,改草莓了。看完这个,有些小伙可能要开始对自己女友调参了。有点不放心,所以补充一下。

撩妹和深度学习一样,既要防止欠拟合,也要防止过拟合。所谓欠拟合,对深度学习而言,就是训练得不够,数据不足,就好比,你撩妹经验不足。

要做到拟合,送花当然是最基本的,还需要提高其他方面,比如,提高自身说话的幽默感等。这里需要提一点,欠拟合固然不好,但过拟合就更不合适了。

过拟合跟欠拟合相反,一方面,如果过拟合,她会觉得你有陈冠希老师的潜质,更重要的是,每个人情况不一样,就像深度学习一样,训练集效果很好,但测试集不行!

就撩妹而言,她会觉得你受前任(训练集)影响很大,这是大忌!如果给她这个印象,你以后有的烦了,切记切记!

深度学习也是一个不断磨合的过程,刚开始定义一个标准参数(这些是经验值,就好比情人节和生日必须送花一样),然后不断地修正,得出图1每个节点间的权重。为什么要这样磨合?

试想一下,我们假设深度学习是一个小孩,我们怎么教他看图识字?肯定得先把图片给他看,并且告诉他正确的答案,需要很多图片,不断地教他,训练他,这个训练的过程,其实就类似于求解神经网络权重的过程。

以后测试的时候,你只要给他图片,他就知道图里面有什么了。

所以训练集,其实就是给小孩看带有正确答案的图片,对于深度学习而言,训练集就是用来求解神经网络的权重,最后形成模型;而测试集,就是用来验证模型的准确度。

对于已经训练好的模型,如下图所示,权重(w1,w2...)都已知。图4图5像上面这样,从左至右容易算出来。但反过来,测试集有图片,也有预期的正确答案,要反过来求w1,w2......,怎么办?

怎么求偏导数?绕了半天,终于该求偏导出场了。目前的情况是:我们假定一个神经网络已经定义好,比如有多少层,每层有多少个节点,也有默认的权重和激活函数等。

输入(图像)确定的情况下,只有调整参数才能改变输出的值。怎么调整,怎么磨合?每个参数都有一个默认值,我们就对每个参数加上一定的数值,然后看看结果如何?

如果参数调大,差距也变大,那就得减小,因为我们的目标是要让差距变小;反之亦然。所以为了把参数调整到最佳,我们需要了解误差对每个参数的变化率,这不就是求误差对于该参数的偏导数吗?

这里有两个点:一个是激活函数,主要是为了让整个网络具有非线性特征。我们前面也提到了,很多情况下,线性函数没办法对输入进行适当的分类(很多情况下识别主要是做分类)。

那么就要让网络学出来一个非线性函数,这里就需要激活函数,因为它本身就是非线性的,所以让整个网络也具有了非线性特征。另外,激活函数也让每个节点的输出值在一个可控的范围内,计算也方便。

貌似这样解释还是很不通俗,其实还可以用撩妹来打比方:女生都不喜欢白开水一样的日子,因为这是线性的,生活中当然需要一些浪漫情怀了,这个激活函数嘛,我感觉类似于生活中的小浪漫,小惊喜。

相处的每个阶段,需要时不时激活一下,制造点小浪漫,小惊喜。比如,一般女生见了可爱的小杯子,瓷器之类都迈不开步子,那就在她生日的时候送一个特别样式,让她感动得想哭。

前面讲到男人要幽默,这是为了让她笑,适当的时候还要让她激动得哭。一哭一笑,多整几个回合,她就离不开你了。因为你的非线性特征太强了。当然,过犹不及,小惊喜也不是越多越好,但完全没有就成白开水了。

就好比每个layer都可以加激活函数,当然,不见得每层都要加激活函数,但完全没有,那是不行的。关键是怎么求偏导。图2和图3分别给了推导的方法,其实很简单,从右至左挨个求偏导就可以。

相邻层的求偏导很简单,因为是线性的,所以偏导数其实就是参数本身嘛,就跟求解x的偏导类似。然后把各个偏导相乘就可以了。

这里有两个点:一个是激活函数,其实激活函数也没啥,就是为了让每个节点的输出都在0到1的区间,这样好算账,所以在结果上面再做了一层映射,都是一对一的。

由于激活函数的存在,在求偏导的时候,也要把它算进去,激活函数,一般用sigmoid,也可以用Relu等。

激活函数的求导其实也非常简单:求导:f'(x)=f(x)*[1-f(x)]这个方面,有时间可以翻看一下高数,如果没时间,直接记住就行了。至于Relu,那就更简单了,就是f(x)当x。

如何理解神经网络里面的反向传播算法

反向传播算法(BP算法)主要是用于最常见的一类神经网络,叫多层前向神经网络,本质可以看作是一个generalnonlinearestimator,即输入x_1...x_n输出y,视图找到一个关系y=f(x_1...x_n)(在这里f的实现方式就是神经网络)来近似已知数据。

为了得到f中的未知参数的最优估计值,一般会采用最小化误差的准则,而最通常的做法就是梯度下降,到此为止都没问题,把大家困住了很多年的就是多层神经网络无法得到显式表达的梯度下降算法!

BP算法实际上是一种近似的最优解决方案,背后的原理仍然是梯度下降,但为了解决上述困难,其方案是将多层转变为一层接一层的优化:只优化一层的参数是可以得到显式梯度下降表达式的;而顺序呢必须反过来才能保证可工作——由输出层开始优化前一层的参数,然后优化再前一层……跑一遍下来,那所有的参数都优化过一次了。

但是为什么说是近似最优呢,因为数学上除了很特殊的结构,step-by-step的优化结果并不等于整体优化的结果!不过,好歹现在能工作了,不是吗?

至于怎么再改进(已经很多改进成果了),或者采用其他算法(例如智能优化算法等所谓的全局优化算法,就算是没有BP这个近似梯度下降也只是局部最优的优化算法)那就是新的研究课题了。

如何理解bp神经网络算法中,总方差对某个权值的偏导,是某层的误差?

可以把网络的输出误差(或者熵)理解成一个隐函数,一个关于权值的隐函数error=f(w1,w2,...,wn)要求函数f的最小值,通常使用梯度下降法,那么就要求梯度,也就是f对每个wi的偏导。

如何学好数学建模

一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。

”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。

一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。

例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。

今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。

特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。

二、建立数学模型的方法和步骤1.模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

2.模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。

如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

3.模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。

这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。

不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

4.模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。

一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。5.模型分析对模型解答进行数学上的分析。

“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。

三、数模竞赛出题的指导思想传统的数学竞赛一般偏重理论知识,它要考查的内容单一,数据简单明确,不允许用计算器完成。

对此而言,数模竞赛题是一个“课题”,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。

其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一编“论文”。

由此可见“数模竞赛”偏重于应用,它是以数学知识为引导计算机运用能力及文章的写作能力为辅的综合能力的竞赛。

四、竞赛中的常见题型赛题题型结构形式有三个基本组成部分:1.实际问题背景涉及面宽——有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。一般都有一个比较确切的现实问题。

2.若干假设条件有如下几种情况:1)只有过程、规则等定性假设,无具体定量数据;2)给出若干实测或统计数据;3)给出若干参数或图形;4)蕴涵着某些机动、可发挥的补充假设条件,或参赛者可以根据自己收集或模拟产生数据。

3.要求回答的问题往往有几个问题,而且一般不是唯一答案。一般包含以下两部分:1)比较确定性的答案(基本答案);2)更细致或更高层次的讨论结果(往往是讨论最优方案的提法和结果)。

五、提交一篇论文,基本内容和格式是什么?提交一篇论文,基本内容和格式大致分三大部分:1.标题、摘要部分题目——写出较确切的题目(不能只写a题、b题)。

摘要——200-300字,包括模型的主要特点、建模方法和主要结果。内容较多时最好有个目录。2.中心部分1)问题提出,问题分析。

2)模型建立:①补充假设条件,明确概念,引进参数;②模型形式(可有多个形式的模型);③模型求解;④模型性质;3)计算方法设计和计算机实现。4)结果分析与检验。

5)讨论——模型的优缺点,改进方向,推广新思想。6)参考文献——注意格式。3.附录部分计算程序,框图。各种求解演算过程,计算中间结果。各种图形、表格。六、参加数学建模竞赛是不是需要学习很多知识?

没有必要很系统的学很多数学知识,这是时间和精力不允许的。很多优秀的论文,其高明之处并不是用了多少数学知识,而是思维比较全面、贴合实际、能解决问题或是有所创新。

有时候,在论文中可能碰见一些没有学过的知识,怎么办?现学现用,在优秀论文中用过的数学知识就是最有可能在数学建模竞赛中用到的,你当然有必要去翻一翻。

具体说来,大概有以下这三个方面:第一方面:数学知识的应用能力归结起来大体上有以下几类:1)概率与数理统计2)统筹与线轴规划3)微分方程;还有与计算机知识交叉的知识:计算机模拟。

上述的内容有些同学完全没有学过,也有些同学只学过一点概率与数理统计,微分方程的知识怎么办呢?

一个词“自学”,我曾听到过数模评卷的负责教师范毅说过“能用最简单浅易的数学方法解决了别人用高深理论才能解决的答卷是更优秀的答卷”。

第二方面:计算机的运用能力一般来说凡参加过数模竞赛的同学都能熟练地应用字处理软件“word”,掌握电子表格“excel”的使用;“mathematica”软件的使用,最好还具备语言能力。

这些知识大部分都是学生自己利用课余时间学习的。第三方面:论文的写作能力前面已经说过考卷的全文是论文式的,文章的书写有比较严格的格式。

要清楚地表达自己的想法并不容易,有时一个问题没说清楚就又说另一个问题了。评卷的教师们有一个共识,一篇文章用10来分钟阅读仍然没有引起兴趣的话,这一遍文章就很有可能被打入冷宫了。七、小组中应该如何分工?

传统的标准答案是——数学,编程,写作。其实分工不用那么明确,但有个前提是大家关系很好。不然的话,很容易产生矛盾。分工太明确了,会让人产生依赖思想,不愿去动脑子。

理想的分工是这样的:数学建模竞赛小组中的每一个人,都能胜任其它人的工作,就算小组只剩下她(他)一个人,也照样能够搞定数学建模竞赛。在竞赛中的分工,只是为了提高工作的效率,做出更好的结果。

具体的建议如下:一定要有一个人脑子比较活,善于思考问题,这个人勉强归于数学方面吧;一定要有一个人会编程序,能够实现一些算法。

另外需要有一个论文写的比较好,不过写不好也没关系,多看一看别人的优秀论文,多用几次word,visio就成了。一、写好数模答卷的重要性1.评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。

2.答卷是竞赛活动的成绩结晶的书面形式。3.写好答卷的训练,是科技写作的一种基本训练。二、答卷的基本内容,需要重视的问题1.评阅原则假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。

2.答卷的文章结构1)摘要。2)问题的叙述,问题的分析,背景的分析等。3)模型的假设,符号说明(表)。4)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。

5)模型的求解计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。6)结果表示、分析与检验,误差分析,模型检验。

7)模型评价,特点,优缺点,改进方法,推广。8)参考文献。9)附录、计算框图、详细图表。3.要重视的问题1)摘要。

包括:a.模型的数学归类(在数学上属于什么类型);b.建模的思想(思路);c.算法思想(求解思路);d.建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……);e.主要结果(数值结果,结论;回答题目所问的全部“问题”)。

▲注意表述:准确、简明、条理清晰、合乎语法、字体工整漂亮;打印最好,但要求符合文章格式。务必认真校对。2)问题重述。3)模型假设。根据全国组委会确定的评阅原则,基本假设的合理性很重要。

a.根据题目中条件作出假设b.根据题目中要求作出假设关键性假设不能缺;假设要切合题意。4)模型的建立。

a.基本模型:ⅰ)首先要有数学模型:数学公式、方案等;ⅱ)基本模型,要求完整,正确,简明;b.简化模型:ⅰ)要明确说明简化思想,依据等;ⅱ)简化后模型,尽可能完整给出;c.模型要实用,有效,以解决问题有效为原则。

数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。

ⅰ)能用初等方法解决的、就不用高级方法;ⅱ)能用简单方法解决的,就不用复杂方法;ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。d.鼓励创新,但要切实,不要离题搞标新立异。

数模创新可出现在:▲建模中,模型本身,简化的好方法、好策略等;▲模型求解中;▲结果表示、分析、检验,模型检验;▲推广部分。

e.在问题分析推导过程中,需要注意的问题:ⅰ)分析:中肯、确切;ⅱ)术语:专业、内行;ⅲ)原理、依据:正确、明确;ⅳ)表述:简明,关键步骤要列出;ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。

5)模型求解。a.需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。b.需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,说明采用此软件的理由,软件名称。

c.计算过程,中间结果可要可不要的,不要列出。d.设法算出合理的数值结果。6)结果分析、检验;模型检验及模型修正;结果表示。

a.最终数值结果的正确性或合理性是第一位的;b.对数值结果或模拟结果进行必要的检验;结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进。

c.题目中要求回答的问题,数值结果,结论,须一一列出;d.列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;e.结果表示:要集中,一目了然,直观,便于比较分析。

▲数值结果表示:精心设计表格;可能的话,用图形图表形式。▲求解方案,用图示更好。7)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。8)模型评价优点突出,缺点不回避。

改变原题要求,重新建模可在此做。推广或改进方向时,不要玩弄新数学术语。9)参考文献10)附录详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。

检查答卷的主要三点,把三关:a.模型的正确性、合理性、创新性b.结果的正确性、合理性c.文字表述清晰,分析精辟,摘要精彩三、关于写答卷前的思考和工作规划答卷需要回答哪几个问题――建模需要解决哪几个问题;问题以怎样的方式回答――结果以怎样的形式表示;每个问题要列出哪些关键数据――建模要计算哪些关键数据;每个量,列出一组还是多组数――要计算一组还是多组数。

四、答卷要求的原理1.准确――科学性;2.条理――逻辑性;3.简洁――数学美;4.创新――研究、应用目标之一,人才培养需要;5.实用――建模、实际问题要求。

五、建模理念1.应用意识要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。

2.数学建模用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。

3.创新意识建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。

1.时间和体力的问题竞赛中时间分配也很重要,分配不好可能完不成论文,所以开始时要大致做一下安排,不必分的太细,比如第一天做第一小题,第二天做第二小题,这样反而会有压力。

开始阶段不忙写作,可以将一些小组讨论的要点记录下来,不要太工整,随便一下,到第三天再开始写论文也不迟的。另外要说的就是体力要跟上,三天一般睡眠只有不到10个小时。

建议是赛前熬夜编程几次,但比赛前一天可不许熬呀,呵呵。2.团队合作是能否获奖的关键三天的比赛中,团队交流所占用的时间可能会超过一半。

当出现分歧的时候应当如何解决是很关键的,甚至直接决定你是否可以获奖,我的建议是“妥协”,不要总认为自己的观点是正确的,多听听别人的观点,在两者之间谋求共同点。

合作在竞赛前就应当培养,比如一块儿做一道题什么的,充分利用每个人的优点,也可以张三准备图论,李四准备最优化方法,然后几天后大家一块交流,这些都是可以磨合团队之间的关系的。

3.重视摘要摘要首先不要写废话,也不要照抄题目的一些话,直奔主题,要写明自己怎样分析问题,用什么方法解决问题,最重要的是结论是什么要说清楚,在中国的竞赛中不写结论的话是一定不会得奖的。

摘要至少需要琢磨两个小时,不要轻视了它的重要性。多看看优秀论文的摘要是如何去写的很有必要的,并要作为赛前准备的课题之一。

4.论文写作要正规论文一定要大致按照摘要、问题重述、模型假设、符号说明、问题分析、(建立、分析、求解模型)、……、参考文献、附录等等的方式来写。

一般初评会先淘汰一些结构失败的文章,如果没有论文的结构,内容再好也没有用。

论文前面的结构一般都不会变的,后面可以按照实际情况来安排自己的结构,省略的部分可以有结果说明、灵敏度分析、其他模型、模型扩展、优缺点分析等等的东西,多看些优秀论文就知道还有哪些形式的了,附录可以贴一些算法流程图或比较大的结果或图表等等。

5.模型的假设与模型的建立评委看完摘要后紧接着就是看模型假设了,有一个万能的方法就是可以抄题目中可以作为假设的几句话,这样会给人留下好的印象,毕竟说明你审题了。

但不能全抄,要加上自己论文中的一些假设,最好不要太具体了,一些重要参数不要被定死只能取某些值,这样会让人感觉到论文的局限性较强。

模型的建立是根据你对问题分析而来的,提出的数学符号和建立模型最好要比较接近,在同一页最好,以便评委可以对照符号来看,数学公式要严谨,推导要严密,这些都反映了一个人的数学素质和能力,即使你推导不对,别人看到你的阵势也首先会误以为你是对的。

6.图文表并茂可以增色我听说一个不确切的信息是评委老师喜欢用matlab编程的论文,不知道有没有这回事,但这说明了老师需要看一个具有图或表在其中的论文,一篇如果像政治书那样写的论文估计没有人会对它感兴趣的,尤其是科技论文。

matlab编程之所以受到青睐是因为matlab提供的图形处理能力很强大,图表的说明性特别强,如果结论有很多数据的话,最好做成图表的形式加以说明,会令你的论文更有说服力,也更加会受到评委的好评。

一、数学建模竞赛中应当掌握的十类算法1.蒙特卡罗算法该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。

2.数据拟合、参数估计、插值等数据处理算法比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具。

3.线性规划、整数规划、多元规划、二次规划等规划类问题建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lindo、lingo软件实现。

4.图论算法这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5.动态规划、回溯搜索、分治算法、分支定界等计算机算法这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。

6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7.网格算法和穷举法网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8.一些连续离散化方法很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9.数值分析算法如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10.图象处理算法赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab进行处理。二、数学软件的主要分类有哪些?

各有什么特点?

数学软件从功能上分类可以分为通用数学软件包和专业数学软件包,通用数学包功能比较完备,包括各种数学、数值计算、丰富的数学函数、特殊函数、绘图函数、用户图形届面交互功能,与其他软件和语言的接口及庞大的外挂函数库机制(工具箱)。

常见的通用数学软件包包括matlab和mathematica和maple,其中matlab是一个高性能的科技计算软件,广泛应用于数学计算、建模、仿真和数据分析处理及工程作图,mathematica是数值和符号计算的代表性软件,maple以符号运算、公式推导见长。

专用数学包包括绘图软件类mathcad,tecplot,idl,surfer,origin,smartdraw,dsp2000),数值计算类:(matcom,idl,datafit,s-spline,lindo,lingo,o-matrix,scilab,octave),数值计算库(linpack/lapack/blas/germs/imsl/cxml),有限元计算类(ansys,marc,parstran,fluent,femlab,flexpde,algor,cosmos,abaqus,adina),计算化学类(gaussian98,spartan,adf2000,chemoffice),数理统计类(gauss,spss,sas,splus,statistica,minitab),数学公式排版类(mathtype,miktex,scientificworkplace,scientificnootbook)。

三、关于数模竞赛的几本好书▲姜启源,《数学模型(第二版)》,高等教育出版社▲姜启源、谢金星、叶俊《数学建模(第三版)》,高等教育出版社▲萧树铁等,《数学实验》,高等教育出版社▲朱道元,《数学建模案例精选》,科学出版社▲雷功炎,《数学模型讲义》,北京大学出版社▲叶其孝等,《大学生数学建模竞赛辅导教材(一)~(四)》,湖南教育出版社▲江裕钊、辛培清,《数学模型与计算机模拟》,电子科技大学出版社▲杨启帆、边馥萍,《数学模型》,浙江大学出版社▲赵静等,《数学建模与数学实验》,高等教育出版社,施普林格出版社四、基础学科1.数学分析2.高等代数3.概率与数理统计4.最优化理论5.图论6.组合数学7.微分方程稳定性分析8.排队论。

贝叶斯网络和贝叶斯分类算法的区别

1、贝叶斯网络是:一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础。

贝叶斯网络是基于概率推理的数学模型,所谓概率推理就是通过一些变量的信息来获取其他的概率信息的过程,基于概率推理的贝叶斯网络(Bayesiannetwork)是为了解决不定性和不完整性问题而提出的,它对于解决复杂设备不确定性和关联性引起的故障有很的优势,在多个领域中获得广泛应用。

2、贝叶斯分类算法是:统计学的一种分类方法,它是一类利用概率统计知识进行分类的算法。

在许多场合,朴素贝叶斯(NaïveBayes,NB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据库中,而且方法简单、分类准确率高、速度快。

3、贝叶斯网络和贝叶斯分类算法的区别:由于贝叶斯定理假设一个属性值对给定类的影响独立于其它属性的值,而此假设在实际情况中经常是不成立的,因此其分类准确率可能会下降。

为此,就衍生出许多降低独立性假设的贝叶斯分类算法,如TAN(treeaugmentedBayesnetwork)算法。

贝叶斯分类算法是统计学的一种分类方法,它是一类利用概率统计知识进行分类的算法。

在许多场合,朴素贝叶斯(NaïveBayes,NB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据库中,而且方法简单、分类准确率高、速度快。

由于贝叶斯定理假设一个属性值对给定类的影响独立于其它属性的值,而此假设在实际情况中经常是不成立的,因此其分类准确率可能会下降。

为此,就衍生出许多降低独立性假设的贝叶斯分类算法,如TAN(treeaugmentedBayesnetwork)算法。

数学公式中的s.t.是什么意思

数学公式中的s.t.是subjectto的缩写,表示约束条件。在数学规划中,对于决策方案的各项限制,常以不等式或方程式的形式出现。

在经济问题中,对目标函数常常要在一定约束条件下求最大值(或最小值),它们包含着用来代表决策方案的变量,借以对决策方案施加限制范围。

建立优化数学模型,通常是根据设计要求,应用相关基础和专业知识,建立若干个相应的数学表达式。对于机械结构优化设计,主要是根据力学,机械设计等专业基础知识及机械制造等专业知识来建立数学模型。

优化问题的一般数学模型如下所示:扩展资料:在机械设计中,一般用作目标函数的有体积最小、质量最小、效率最大、柔度最小、振幅或噪声最小、成本最低,等等。机械优化设计一般分为单目标优化问题和多目标优化问题。

只有一个目标函数的优化问题称为单目标优化问题;在同一个设计中要提出多个目标区数时,称为多目标优化问题。目标函数愈多,设计的综合效果愈好,但求解的难度也愈大。目标函数一般表现为显式和隐式两种。

显式目标函数是根据设计理论或公式、科学定理的关系推导的代数方程,或是根据实验数据采用曲线拟合方法所得的曲线方程;隐式目标函数是利用有限元分析方法、人工神经网络方法或仿真模拟方法的程序计算的结果,没有明显的函数式,但可给出函数值。

提高孩子记忆力的方法 记忆力提升培训?

增强记忆的12种方法:1.注意集中记忆时只要聚精会神,专心致志,排除杂念和外界干扰,大脑皮层就会留下深刻的记忆痕迹而不容易遗忘.如果精神涣散,一心二用,就会大大降低记忆效率.2.兴趣浓厚如果对学习材料,知识对象索然无味,即使花再多时间,也难以记住.3.理解记忆理解是记忆的基础.只有理解的东西才能记得牢记得久.仅靠死记硬背,则不容易记得住.对于重要的学习内容,如能做到理解和背诵相结合,记忆效果会更好.4.过度学习即对学习材料在记住的基础上,多记几遍,达到熟记,牢记的程度.5.及时复习遗忘的速度是先快后慢.对刚学过的知识,趁热打铁,及时温习巩固,是强化记忆痕迹,防止遗忘的有效手段.6.经常回忆学习时,不断进行尝试回忆,可使记忆有错误得到纠正,遗漏得到弥补,使学习内容难点记得更牢.闲暇时经常回忆过去识记的对象,也能避免遗忘.7.视听结合可以同时利用语言功能和视,听觉器官的功能,来强化记忆,提高记忆效率.比单一默读效果好得多.8.多种手段根据情况,灵活运用分类记忆,图表记忆,缩短记忆及编提纲,作笔记,卡片等记忆方法,均能增强记忆力.9.最佳时间一般来说,上午9~11时,下午3~4时,晚上7~10时,为最佳记忆时间.利用上述时间记忆难记的学习材料,效果较好.10.科学用脑在保证营养,积极休息,进行体育锻炼等保养大脑的基础上,科学用脑,防止过度疲劳,保持积极乐观的情绪,能大大提高大脑的工作效率.这是提高记忆力的关键指导意见:脑力劳动者,在校学生不妨经常选食.1,牛奶.牛奶是一种近乎完美的营养品K?缓?鞍字省⒏疲?按竽运?匦璧陌被?帷ED讨械母谱钜妆蝗宋?眨?悄源?徊豢扇鄙俚闹匾?镏省4送猓??购?陨窬?赴??钟幸娴奈??谺1等元素.如果用脑过度而失眠时,睡前一杯热牛奶有助入睡.2,鸡蛋.大脑活动功能,记忆力强弱与大脑中乙酰胆碱含量密切相关.实验证明,吃鸡的妙处在于:当蛋黄中所含丰富的卵磷脂被酶分解后,能产生出丰富的乙酰胆碱,进入血液又会很快到达脑组织中,可增强记忆力.国外研究证实,每天吃1,2只鸡蛋就可以向机体供给足够的胆碱,对保护大脑,提高记忆力大有好处.3,鱼类.它们可以向大脑提供优质蛋白质和钙,淡水鱼所含的脂肪酸多为不饱和脂肪酸,不会引起血管硬化,对脑动脉血管无危害,相反,还能保护脑血管,对大脑细胞活动有促进作用.4,味精.味精的主要成分是谷氨酸钠,它在胃酸的作用下可转化为谷氨酸.谷氨酸是参加人体脑代谢的唯一氨基酸,能促进智力发育,维持和改进大脑机能.常摄入些味精,对改善智力不足及记忆力障碍有帮助.由于味精会使脑内乙酰胆碱增加,因而对神经衰弱症也有一定疗效.5,花生.花生富含卵磷脂和脑磷脂,它是神经系统所需要的重要物质,能延缓脑功能衰退,抑制血小板凝集,防止脑血栓形成.实验证实,常食花生可改善血液循环,增强记忆,延缓衰老,是名符其实的“长生果”.6,小米.小米中所含的维生素B1和B2分别高于大米1.5倍和1倍,其蛋白质中含较多的色氨酸和蛋氨酸.临床观察发现,吃小米有防止衰老的作用.如果平时常吃点小米粥,小米饭,将益于脑的保健.7,玉米.玉米胚中富含亚油酸等多种不饱和脂肪酸,有保护脑血管和降血脂作用.尤其是玉米中含水量谷氨酸较高,能帮助促进脑细胞代谢,常吃些玉米尤其是鲜玉米,具有健脑作用.8,黄花菜.人们常说,黄花菜是“忘忧草”,能“安神解郁”.注意:黄花菜不宜生吃或单炒,以免中毒,以干品和煮熟吃为好.9,辣椒.辣椒维生素C含量居各蔬菜之首,胡萝卜素和维生素含量也很丰富.辣椒所含的辣椒碱能刺激味觉,增加食欲,促进大脑血液循环.近年有人发现,辣椒的“辣”味还是刺激人体内追求事业成功的激素,使人精力充沛,思维活跃.辣椒以生吃效果更好.10,菠菜.菠菜虽廉价而不起眼,但它属健脑蔬菜.由于菠菜中含有丰富的维生素A,C,B1和B2,是脑细胞代谢的“最佳供给者”之一.此外,它还含有大量叶绿素,也具有健脑益智作用.11,橘子.橘子含有大量维生素A,B1和C,属典型的碱性食物,可以消除大量酸性食物对神经系统造成的危害.考试期间适量常吃些橘子,能使人精力充沛.此外,柠檬,广柑,柚子等也有类似功效,可代替橘子.12,菠萝.菠萝含有很多维生素C和微量元素锰,而且热量少,常吃有生津,提神的作用,有人称它是能够提高人记忆力的水果.菠萝常是一些音乐家,歌星和演员最喜欢的水果,因为他们要背诵大量的乐谱,歌词和台词.。

 

你可能感兴趣的:(神经网络)