- 自然语言处理(NLP)入门:基础概念与应用场景
Ash Butterfield
nlp自然语言处理人工智能
什么是自然语言处理(NLP)?自然语言处理(NaturalLanguageProcessing,NLP)是人工智能(AI)的一个重要分支,研究如何让计算机理解、生成、分析和与人类语言进行交互。换句话说,NLP是让机器像人一样“读、写、听、说”的技术,它结合了语言学、机器学习、计算机科学等多学科知识。NLP的核心目标是将非结构化的自然语言(如文本和语音)转化为结构化数据,使机器能够高效处理、分析和生
- 机器学习算法工程师笔试选择题(1)
Ash Butterfield
机器学习算法人工智能
1.关于梯度下降的说法正确的是:A.梯度下降法可以确保找到全局最优解。B.随机梯度下降每次使用所有数据来更新参数。C.批量梯度下降(BatchGradientDescent)通常收敛更快。D.学习率过大会导致梯度下降过程震荡。答案:D(学习率过大会导致不稳定,可能震荡或无法收敛)2.在以下算法中,哪种算法属于无监督学习?A.逻辑回归B.K-近邻算法C.支持向量机D.K-均值聚类答案:D(K-均值聚
- 多模态大模型(LMMs)与大语言模型(LLMs)的比较
大F的智能小课
底层技术解析人工智能语言模型
前言现在的大模型分为两大类:大语言模型(LargeLanguageModels,简称LLMs)和多模态大模型(LargeMultimodalModels,简称LMMs)。本文将从基础定义、输入数据、应用场景、训练过程这几方面讨论下两者的区别。基础定义LLMs(LargeLanguageModels,大型语言模型)-深度学习的应用之一,是基于深度学习的大规模机器学习模型,通常由数十亿到数万亿个参数构
- 手把手教你给 windows装个vmware虚拟机
python算法小白
附Java/C/C++/机器学习/算法与数据结构/前端/安卓/Python/程序员必读书籍书单大全:书单导航页(点击右侧极客侠栈即可打开个人博客):极客侠栈①【Java】学习之路吐血整理技术书从入门到进阶最全50+本(珍藏版)②【算法数据结构+acm】从入门到进阶吐血整理书单50+本(珍藏版)③【数据库】从入门到进阶必读18本技术书籍网盘吐血整理网盘(珍藏版)④【Web前端】从HTML到JS到AJ
- 【Elasticsearch】分词器概述
risc123456
Elasticsearchelasticsearch
Elasticsearch分词与神经网络分词的区别Elasticsearch的分词过程产生的是优化用于搜索和检索的语言学分词。这与机器学习和自然语言处理中的神经分词不同。神经分词器将字符串转换为更小的子词分词,这些分词被编码为向量,供神经网络使用。Elasticsearch没有内置的神经分词器。分词器接收一个字符流,将其分解为单独的分词(通常是单个单词),并输出一个分词流。例如,`whitespa
- 从零开始大模型开发与微调:Miniconda的下载与安装
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:Miniconda的下载与安装1.背景介绍随着人工智能和机器学习技术的快速发展,大型语言模型(LargeLanguageModel,LLM)已经成为当前研究和应用的热点。这些模型通过在海量文本数据上进行预训练,能够捕捉到丰富的语义和上下文信息,从而在自然语言处理任务中表现出色。然而,训练这些庞大的模型需要大量的计算资源,对于普通开发者来说,从头开始训练一个大模型是一个巨大
- 如何避免交叉验证中的数据泄露?
奋进小青
人工智能深度学习机器学习
大家好,我是小青在机器学习中,交叉验证(Cross-Validation)是一种常用的模型评估技术,目的是通过将数据集分割为多个子集,反复训练和验证模型,以便更好地估计模型的性能。然而,在交叉验证过程中,数据泄露(DataLeakage)是一个非常严重的问题,它会导致模型的评估结果过于乐观,进而使得模型在实际应用中表现不佳。什么是数据泄露数据泄露是指在模型训练过程中,模型不恰当地接触到了与验证集或
- 探索机器学习在个性化推荐系统中的妙用:Python实战解析
Echo_Wish
前沿技术人工智能机器学习python人工智能
探索机器学习在个性化推荐系统中的妙用:Python实战解析在信息爆炸的时代,我们每天都被大量的内容包围着。如何在海量的信息中找到真正适合自己的内容?这就是个性化推荐系统的使命。作为一名热爱人工智能和Python的技术人,今天我想和大家聊聊机器学习在个性化推荐系统中的应用,并通过具体的代码示例,带大家一起探索这个领域的奥秘。一、个性化推荐系统的意义首先,我们来思考一个问题:为什么需要个性化推荐系统?
- 攻克AWS认证机器学习工程师(AWS Certified Machine Learning Engineer) - 助理级别认证:我的成功路线图
硅基创想家
AI-人工智能与大模型aws机器学习云计算AWS认证
引言当我决定考取AWS认证机器学习工程师-助理(AWSCertifiedMachineLearningEngineer—Associate)级别证书时,我就预料到这将是一段充满挑战但回报颇丰的旅程。跟你说吧,它在这两方面都没让我失望。这项考试面向的是不仅理解机器学习原理,还对AWS生态系统有扎实基础认知的专业人士。如果你还未达到AWS认证解决方案架构师-助理级别的水平,那你得先夯实这些基础。一个不
- Tritonserver 在得物的最佳实践
运维
一、Tritonserver介绍Tritonserver是Nvidia推出的基于GPU和CPU的在线推理服务解决方案,因其具有高性能的并发处理和支持几乎所有主流机器学习框架模型的特点,是目前云端的GPU服务高效部署的主流方案。Tritonserver的部署是以模型仓库(ModelRepository)的形式体现的,即需要模型文件和配置文件,且按一定的格式放置如下,根目录下每个模型有各自的文件夹。.
- DeepSeek 实现原理探析
rockmelodies
人工智能aideepseek深度学习
DeepSeek实现原理探析引言DeepSeek是一种基于深度学习的智能搜索技术,它通过结合自然语言处理(NLP)、信息检索(IR)和机器学习(ML)等多领域的技术,旨在提供更加精准、智能的搜索结果。本文将深入探讨DeepSeek的实现原理,分析其核心技术及其在实际应用中的表现。一、DeepSeek的核心技术自然语言处理(NLP)词嵌入(WordEmbedding):DeepSeek使用如Word
- 常见的深度学习模型总结
编码时空的诗意行者
深度学习人工智能
1.深度前馈神经网络(DeepFeedforwardNetworks)发明时间:2006年左右,随着计算能力的提升和大数据集的可用性增加,深度学习开始兴起。发明动机:解决传统机器学习模型在复杂数据上的局限性,如线性模型无法处理非线性关系的数据。模型特点:由多个隐藏层组成的神经网络,每一层的节点与下一层的节点完全连接。应用场景:分类、回归、语音识别、图像识别等。2.卷积神经网络(Convolutio
- 自动驾驶技术的未来趋势与挑战分析
智能计算研究中心
其他
内容概要自动驾驶技术自诞生以来经历了多个发展阶段。最初的研究集中在感知和控制系统的基础构建,随后进入了数据处理和算法的优化阶段,如今,随着人工智能和机器学习技术的快速应用,自动驾驶行业正处于一个前所未有的迅猛发展期。当前,行业内涌现出多种解决方案,各大汽车制造商与科技公司纷纷加大投入,推动这一领域的技术进步。市场需求不断增加,为自动驾驶技术注入活力。城市交通拥堵、环境污染等问题促使人们寻求更加智能
- 【深入探索-deepseek】高等数学与AI的因果关系
我的青春不太冷
人工智能机器学习数学
目录数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数2.微积分3.概率论与统计二、自然语言处理领域三、语音识别领域四、数学在AI不同领域应用的逻辑图五、参考资料数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数图像变换:想象我们有一张二维图片,图片里有个点,它的位置用坐标((x,y))表示。现在我们想把这个点绕着图片的原点(就像把纸钉在墙上,以钉子的位置为中心)逆时针旋转一定角度
- python 学习路线
Coding Happily
python学习windows
学习顺序《python编程:从入门到实践》《Head-FirstPython》《“笨方法”学python3》《PythonCookbook》《Python机器学习基础教程》《FluentPython》《Python编程》《Python编程:从入门到实践》变量变量命名:仅用小写和下划线。变量本质:指向特定的值。字符串在字符串中使用变量:f’{varies1}{varies2}’更早版本:‘{}{}’
- 【鸿蒙在OpenHarmony系统上集成OpenCV,实现图片裁剪】
萌虎不虎
OpenHarmonyharmonyosopencv华为
鸿蒙在OpenHarmony系统上集成OpenCV,实现图片裁剪OpenCV介绍OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库。它由一系列的C函数和少量C++类构成,同时提供Python、Java和MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV具有极广的应用领域,它包括但不限于:人脸识别和物
- 使用 HuggingFace 库进行本地嵌入向量生成
qq_37836323
python人工智能开发语言
在当今的AI和机器学习应用中,嵌入向量(embeddings)已成为不可或缺的一部分。嵌入向量能够将文本等高维数据转换为低维稠密向量,从而便于计算和分析。在本文中,我们将介绍如何使用HuggingFace库在本地生成嵌入向量,并演示相关代码。环境准备首先,我们需要安装一些必要的依赖库。可以通过以下命令进行安装:#安装必要的库!pipinstallsentence-transformers!pipi
- 机器学习面试笔试知识点-线性回归、逻辑回归(Logistics Regression)和支持向量机(SVM)
qq742234984
机器学习线性回归逻辑回归
机器学习面试笔试知识点-线性回归、逻辑回归LogisticsRegression和支持向量机SVM微信公众号:数学建模与人工智能一、线性回归1.线性回归的假设函数2.线性回归的损失函数(LossFunction)两者区别3.简述岭回归与Lasso回归以及使用场景4.什么场景下用L1、L2正则化5.什么是ElasticNet回归6.ElasticNet回归的使用场景7.线性回归要求因变量服从正态分布
- 【AI】人工智能没那么神秘!
仇辉攻防
人工智能ai语言模型自然语言处理机器学习深度学习网络安全
AI是什么?人工智能(ArtificialIntelligence),英文缩写为AI。AI人工智能不是简单的应用程序,而是一类技术,包含机器学习、自然语言处理、计算机视觉等多个领域。AI系统通常由算法、数据、模型和代码组成,其中代码用于实现算法,数据用于训练模型,最终形成智能决策能力。AI可以嵌入到应用程序中,但其本身是一个复杂的技术体系。AI为什么这么聪明?AI之所以看起来很聪明,主要是因为它通
- 机器学习: 逻辑回归
小源学AI
人工智能机器学习逻辑回归人工智能
概念与定义逻辑回归是一种用于分类问题的统计方法。它通过计算目标变量的概率来预测类别归属,并假设数据服从伯努利分布(二分类)或多项式分布(多分类)。逻辑回归模型输出的是概率值,通常使用sigmoid函数将线性组合映射到0和1之间。1.概念逻辑回归用于解决分类问题,特别是二分类问题。它通过估计输入变量与目标变量之间的关系来预测目标变量的类别。2.定义逻辑回归是一种广义线性模型,其核心思想是将线性组合通
- GitHub 上的开源项目推荐
临水逸
github开源
GitHub上的开源项目有成千上万,涵盖了从前端框架到数据科学、机器学习、系统工具等各个领域。不同的人根据兴趣和需求,可能会有不同的排名。不过,一些开源项目因为其广泛的应用、社区支持和技术创新,通常被认为是“最好”的开源项目之一。下面是一些广受欢迎、常被认为是GitHub上最好的开源项目(按领域分类):1.开发工具与库Bootstrap最流行的前端框架之一,用于快速开发响应式和现代化的网页。Vue
- 2024年机器学习高薪认证
科技评论AI
机器学习人工智能
在这个数字时代,各大公司都在优先考虑使用AI(人工智能)和ML(机器学习)来解决各种问题。机器学习已成为技术领域中最具活力和收益潜力的领域之一,其在组织中的日益整合导致对具有认证资格专业人士的需求增加。认证不仅有助于提高在这一领域的专业知识,而且还能增加他们的收入潜力。本文深入探讨了2024年最具高薪潜力的机器学习认证,以及它们的价格,以便为您提供详尽的展望并帮助您选择合适的认证。最高薪的机器学习
- 【python 机器学习】sklearn转换器与预估器
人才程序员
杂谈python机器学习sklearn人工智能目标检测深度学习神经网络
文章目录sklearn转换器与预估器1.什么是转换器(Transformer)?通俗介绍:学术解释:2.什么是预估器(Estimator)?通俗介绍:学术解释:3.转换器与预估器的共同点4.转换器与预估器的区别5.使用`sklearn`中的转换器与预估器5.1示例:数据标准化(转换器)5.2示例:模型训练与预测(预估器)6.使用`Pipeline`结合转换器与预估器7.总结sklearn转换器与预
- 多图详解VSCode搭建Python开发环境
爱编程的喵喵
Python基础课程vscodeidepython开发环境
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文通过多图的方式详细介绍了VSCode搭建Pyt
- 更符合DeepSeek的提问方式,学术论文方面的能力我总结了这几十个提示词!
AIWritePaper官方账号
AIWritePaperDeepSeek学术论文人工智能chatgpt数据分析prompt论文阅读
DeepSeek提问技巧总结1.聚焦核心,细化问题:提问时应精准明确,避免过于宽泛或模糊。例如不要问“如何学习机器学习?”而应问“零基础如何机器学习”。对于复杂问题,可将其拆解为多个小问题,逐一提问。比如先问“学习机器学习先学习python更好吗?”再问“如何用Kaggle进行机器学习相关的数据竞赛?”2.提供背景,结构化描述:在提问时,提供问题的背景信息或目标,以便DeepSeek更准确地理解需
- python 3.8 的anaconda怎么下载
xiamu_CDA
python开发语言
Python3.8版本的Anaconda下载与安装指南在当今数据科学、机器学习和人工智能领域,Anaconda作为一款集成了众多Python包的发行版,受到了广泛欢迎。它不仅简化了环境管理,还极大地提高了开发效率。本文将详细介绍如何下载并安装包含Python3.8的Anaconda发行版,帮助读者快速上手使用这一强大的工具。一、Anaconda简介Anaconda是由ContinuumAnalyt
- Kibana全方位解析:告别小白,成为高手的必经之路!
奔跑吧邓邓子
项目实战Logstash可视化监控kibana
目录一、Kibana概述1、Kibana简介2、Kibana与Elasticsearch的关系1.1相互依赖性1.2数据流动1.3功能互补1.4协同工作3、Kibana的主要功能1.1数据发现与探索1.2可视化与仪表板1.3监控与告警1.4Canvas可视化1.5机器学习1.6管道处理1.7报告与定时任务1.8管理与分析二、Kibana安装与配置1、环境要求1.1操作系统1.2Java运行环境1.
- 17.推荐系统的在线学习与实时更新
郑万通
推荐系统
接下来就讲解推荐系统的在线学习与实时更新。推荐系统的在线学习和实时更新是为了使推荐系统能够动态地适应用户行为的变化,保持推荐结果的实时性和相关性。以下是详细的介绍和实现方法。推荐系统的在线学习与实时更新在线学习的概念在线学习(OnlineLearning)是一种机器学习方法,与传统的批量学习(BatchLearning)不同,在线学习模型能够在数据流到达时逐步更新,而不是在整个数据集上训练一次。这
- Java也能玩转机器学习?从零搭建你的第一个模型
prince_zxill
人工智能与机器学习教程java机器学习开发语言人工智能边缘计算
Java也能玩转机器学习?从零搭建你的第一个模型引言:一、打破认知:Java也能玩转机器学习1.1为什么选择Java?1.1.1无缝集成1.1.2JVM的跨平台优势1.1.3高性能计算能力1.1.4多线程与分布式计算1.2主流Java机器学习库全景1.2.1基础数值计算库1.2.2传统机器学习框架1.2.3深度学习生态1.2.4特殊领域工具1.3企业级机器学习架构1.3.1典型技术栈组合1.3.2
- Python 调用 Azure OpenAI API
ivwdcwso
开发pythonazureflaskopenai开发ai人工智能
在人工智能和机器学习快速发展的今天,AzureOpenAI服务为开发者提供了强大的工具来集成先进的AI能力到他们的应用中。本文将指导您如何使用Python调用AzureOpenAIAPI,特别是使用GPT-4模型进行对话生成。准备工作在开始之前,请确保您已经:拥有一个Azure账户并开通了AzureOpenAI服务。获取了API密钥和终端点URL。安装了Python和requests库。如果还没有
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb