【PyTorch基础知识】基础入门

笔者在复现顶会论文时,发现大多作文采用PyTorch而非tensorflow+keras搭建,因此需要补充学习PyTorch基础。同时,记录学习过程~

文章目录

  • 参考:
  • 1.安装
  • 2.两个有用的函数:dir和help
  • 3.两个关于数据的类:Dataset和DataLoader
    • 3.1.Dataset
    • 3.2.DataLoader
  • 4.TensorBoard
    • 4.1.add_scalar
    • 4.2.add_image
  • 5.Transforms
    • 5.1.ToTensor
    • 5.2.Normalize
  • 6.网络搭建
    • 6.1.模型保存和读取
    • 6.2.完整训练
    • 6.2.GPU
  • 备注
    • 1.jupyter notebook的使用

参考:

1.相关代码教程
2.B站视频

1.安装

在官网根据需要生成命令行即可。需要注意的是:所选择的cuda版本需小于系统的版本

nvcc -V #查看cuda版本

验证是否成功安装

python #进入python环境
import torch
torch.cuda.is_available() #返回true则安装成功

2.两个有用的函数:dir和help

dir: 查看工具包的子类
help: 查看具体某个函数的作用

3.两个关于数据的类:Dataset和DataLoader

3.1.Dataset

from torch.utils.data import Dataset
from PIL import Image
import os

#定义MyData类继承Dataset抽象类,并且定义初始化全局变量,重写__getitem__和__len__方法
class MyData(Dataset):
    def __init__(self, root_dir, label_dir):
        self.root_dir = root_dir
        self.label_dir = label_dir
        self.path = os.path.join(self.root_dir, self.label_dir)
        self.image_path = os.listdir(self.path) #传入相应的路径,将会返回那个目录下的所有文件名

    def __getitem__(self, idx):
        img_name = self.image_path[idx] #对应样本的文件名
        img_item_path = os.path.join(self.path, img_name) #样本路径
        img = Image.open(img_item_path)
        label = self.label_dir
        return img, label

    def __len__(self):
        return len(self.image_path)


root_dir = "src/dataset/train"
ants_label_dir = "ants"
ants_dataset = MyData(root_dir,ants_label_dir)

3.2.DataLoader

数据如何加载

import torchvision

# 准备的测试数据集
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())

test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)

# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape)
print(target)

writer = SummaryWriter("logs")
for epoch in range(2):
    step = 0
    for data in test_loader:
        imgs, targets = data
        # print(imgs.shape)
        # print(targets)
        writer.add_images("Epoch: {}".format(epoch), imgs, step)
        step = step + 1

writer.close()

4.TensorBoard

TensorBoard 是一组用于数据可视化的工具

4.1.add_scalar

from torch.utils.tensorboard import SummaryWriter
writer =  SummaryWriter("logs") //记录事件文件至log文件夹

for i in range(100):
    writer.add_scalar("y=x",i,i)

writer.close()

执行完上述测试样例后,需要将目录定位到logs的父目录,然后使用如下指令

tensorboard --logdir=logs  //默认6006端口,当然亦可以修改
tensorboard --logdir=logs --port=6007

注意:为避免历史logs对绘图的影响,一般需要将logs文件夹清空,重新执行tensorboard --logdir=logs

4.2.add_image

from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter("logs")
image_path = "dataset/train/ants/148715752_302c84f5a4.jpg"
img_PIL = Image.open(image_path)
img_array = np.array(img_PIL) #将img变量转为numpy,符合add_image的传参需求
print(type(img_array))
print(img_array.shape)

#dataformats默认是(1, H, W),否则需指定
writer.add_image("train", img_array, 2, dataformats='HWC')

writer.close()

5.Transforms

本质是一个工具包,可以对图片进行工作操作

5.1.ToTensor

from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from PIL import Image

writer = SummaryWriter("logs")
img = Image.open("dataset/train/ants/0013035.jpg")
print(img)

#ToTensor
trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor", img_tensor)
writer.close()

5.2.Normalize

#Normalize
print(img_tensor[0][0][0])
#归一化公式
#output[channel] = (input[channel] - mean[channel]) / std[channel]
trans_norm = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("Normalize", img_norm)
writer.close()

6.网络搭建

简单的使用

import torch
from torch import nn


class Net(nn.Module):
    def __init__(self) -> None:
        super().__init__()

    def forward(self, input):
        output = input + 1.0
        return output


net = Net()
x = torch.tensor(1.0)
output = net(x)
print(output)

Loss作用:
1.比较网络输出玉实际标签的误差;
2.为反向传播时的梯度更新提供依据。

6.1.模型保存和读取

  • 保存
# 保存方式1,模型结构+模型参数
torch.save(vgg16, "vgg16_method1.pth")

# 保存方式2,模型参数(官方推荐)
torch.save(vgg16.state_dict(), "vgg16_method2.pth")
  • 读取
# 方式1-》保存方式1,加载模型
import torchvision
from torch import nn

model = torch.load("vgg16_method1.pth")
# print(model)

# 方式2,加载模型
vgg16 = torchvision.models.vgg16(pretrained=False)
vgg16.load_state_dict(torch.load("vgg16_method2.pth"))
# model = torch.load("vgg16_method2.pth")
print(vgg16)

6.2.完整训练

搭建模型 model.py

import torch
from torch import nn

# 搭建神经网络
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x


if __name__ == '__main__':
    tudui = Tudui()
    input = torch.ones((64, 3, 32, 32))
    output = tudui(input)
    print(output.shape)

训练&测试 train.py

import torchvision
from torch.utils.tensorboard import SummaryWriter

from model import *
# 准备数据集
from torch import nn
from torch.utils.data import DataLoader

train_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10, 训练数据集的长度为:10
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))


# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建网络模型
tudui = Tudui()

# 损失函数
loss_fn = nn.CrossEntropyLoss()

# 优化器
# learning_rate = 0.01
# 1e-2=1 x (10)^(-2) = 1 /100 = 0.01
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10

# 添加tensorboard
writer = SummaryWriter("../logs_train")

for i in range(epoch):
    print("-------第 {} 轮训练开始-------".format(i+1))

    # 训练步骤开始
    tudui.train()
    for data in train_dataloader:
        imgs, targets = data
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数:{}, Loss: {}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 测试步骤开始
    tudui.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():#保证测试不会调优
        for data in test_dataloader:
            imgs, targets = data
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的Loss: {}".format(total_test_loss))
    print("整体测试集上的正确率: {}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step = total_test_step + 1

    torch.save(tudui, "tudui_{}.pth".format(i))
    print("模型已保存")

writer.close()

6.2.GPU

在6.1版本上修改4处

  • 利用if torch.cuda.is_available():
# 创建网络模型
tudui = Tudui()
if torch.cuda.is_available():
    tudui = tudui.cuda()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()


for i in range(epoch):
    print("-------第 {} 轮训练开始-------".format(i+1))
    # 训练步骤开始
    tudui.train()
    for data in train_dataloader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            targets = targets.cuda()
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets)
  • 利用device = torch.device(“cuda:0”)
# 定义训练的设备
device = torch.device("cuda:0")
tudui = tudui.to(device)
loss_fn = loss_fn.to(device)

备注

1.jupyter notebook的使用

需要在anaconda prompt激活所需要的环境,然后命令行输入

jupyter notebook

linux环境下需要先打开anaconda prompt

你可能感兴趣的:(AMC,pytorch)