PyTorch预训练Bert模型

本文介绍以下内容:

  1. 使用transformers框架做预训练的bert-base模型;
  2. 开发平台使用Google的Colab平台,白嫖GPU加速;
  3. 使用datasets模块下载IMDB影评数据作为训练数据。

transformers模块简介

transformers框架为Huggingface开源的深度学习框架,支持几乎所有的Transformer架构的预训练模型。使用非常的方便,本文基于此框架,尝试一下预训练模型的使用,简单易用。

本来打算预训练bert-large模型,发现colab上GPU显存不够用,只能使用base版本了。打开colab,并且设置好GPU加速,接下来开始介绍代码。

代码实现

首先安装数据下载模块和transformers包。

!pip install datasets
!pip install transformers

使用datasets下载IMDB数据,返回DatasetDict类型的数据.返回的数据是文本类型,需要进行编码。下面会使用tokenizer进行编码。

from datasets import load_dataset

imdb = load_dataset('imdb')
print(imdb['train'][:3]) # 打印前3条训练数据

接下来加载tokenizer和模型.从transformers导入AutoModelForSequenceClassificationAutoTokenizer,创建模型和tokenizer

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_checkpoint = "bert-base-uncased"

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=2)

对原始数据进行编码,并且分批次(batch)


def preprocessing_func(examples):
    return tokenizer(examples['text'], 
                     padding=True,
                     truncation=True, max_length=300)
                     
batch_size = 16

encoded_data = imdb.map(preprocessing_func, batched=True, batch_size=batch_size)

上面得到编码数据,每个批次设置为16.接下来需要指定训练的参数,训练参数的指定使用transformers给出的接口类TrainingArguments,模型的训练可以使用Trainer

from transformers import Trainer, TrainingArguments

args = TrainingArguments(
    'out',
    per_device_train_batch_size=batch_size,
    per_device_eval_batch_size=batch_size,
    learning_rate=5e-5,
    evaluation_strategy='epoch',
    num_train_epochs=10,
    load_best_model_at_end=True,
)

trainer = Trainer(
    model,
    args=args,
    train_dataset=encoded_data['train'],
    eval_dataset=encoded_data['test'],
    tokenizer=tokenizer
)

训练模型使用trainer对象的train方法

trainer.train()

PyTorch预训练Bert模型_第1张图片

评估模型使用trainer对象的evaluate方法

trainer.evaluate()

总结

本文介绍了基于transformers框架实现的bert预训练模型,此框架提供了非常友好的接口,可以方便读者尝试各种预训练模型。同时datasets也提供了很多数据集,便于学习NLP的各种问题。加上Google提供的colab环境,数据下载和预训练模型下载都非常快,建议读者自行去炼丹。本文完整的案例下载

欢迎关注个人微信公众号:数学编程或者math188
个人网站:http://blackedu.vip

你可能感兴趣的:(机器学习,算法,深度学习,python)