大家好,今天总结Coursera网课上Andrew Ng MachineLearning 第四次作业
(1) nnCostFunction.m
function [J grad] = nnCostFunction(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
% [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
% X, y, lambda) computes the cost and gradient of the neural network. The
% parameters for the neural network are "unrolled" into the vector
% nn_params and need to be converted back into the weight matrices.
%
% The returned parameter grad should be a "unrolled" vector of the
% partial derivatives of the neural network.
%
% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
% Setup some useful variables
m = size(X, 1);
% You need to return the following variables correctly
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));
% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
% following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
% variable J. After implementing Part 1, you can verify that your
% cost function computation is correct by verifying the cost
% computed in ex4.m
%
% Part 2: Implement the backpropagation algorithm to compute the gradients
% Theta1_grad and Theta2_grad. You should return the partial derivatives of
% the cost function with respect to Theta1 and Theta2 in Theta1_grad and
% Theta2_grad, respectively. After implementing Part 2, you can check
% that your implementation is correct by running checkNNGradients
%
% Note: The vector y passed into the function is a vector of labels
% containing values from 1..K. You need to map this vector into a
% binary vector of 1's and 0's to be used with the neural network
% cost function.
%
% Hint: We recommend implementing backpropagation using a for-loop
% over the training examples if you are implementing it for the
% first time.
%
% Part 3: Implement regularization with the cost function and gradients.
%
% Hint: You can implement this around the code for
% backpropagation. That is, you can compute the gradients for
% the regularization separately and then add them to Theta1_grad
% and Theta2_grad from Part 2.
%
a1= [ones(m, 1) X];
z2=Theta1*a1';
a2=sigmoid(z2);
a2=[ones(1,m);a2];
z3=Theta2*a2;
a3=sigmoid(z3);
h=a3;
%把label形式的y转换为向量形式的y;
y_vect=zeros(num_labels,m);
for i=1:m
y_vect(y(i),i)=1;
end
for i=1:m
J=J+1/m*sum(-log(h(:,i))'*y_vect(:,i)-log(1-h(:,i))'*(1-y_vect(:,i)));
end
%costFunction结束
%正则化
Theta1_use=Theta1(:,2:end);
Theta2_use=Theta2(:,2:end);
J=J+lambda/(2*m)*(sum(sum(Theta1_use.^2))+sum(sum(Theta2_use.^2)));
%计算梯度
%Δ的元素个数应该和对应的theta中的元素的个数相同
Delta1 = zeros(size(Theta1));
Delta2 = zeros(size(Theta2));
for i=1:m
delta3=a3(:,i)-y_vect(:,i);
%注意这里的δ是不包含bias unit的delta的,毕竟bias unit永远是1,
%不需要计算delta, 下面的2:end,: 过滤掉了bias unit相关值
temp=Theta2'*delta3;
delta2=temp(2:end,:).*sigmoidGradient(z2(:,i));
Delta2=Delta2+delta3*a2(:,i)';
Delta1=Delta1+delta2*a1(i,:);
% -------------------------------------------------------------
end
Theta1_grad=Delta1/m;
Theta2_grad=Delta2/m;
Theta1_grad(:,2:end)=Theta1_grad(:,2:end)+lambda/m*Theta1(:,2:end);
Theta2_grad(:,2:end)=Theta2_grad(:,2:end)+lambda/m*Theta2(:,2:end);
% =========================================================================
% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];
end
(2)sigmoidGradient.m
function g = sigmoidGradient(z)
%SIGMOIDGRADIENT returns the gradient of the sigmoid function
%evaluated at z
% g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function
% evaluated at z. This should work regardless if z is a matrix or a
% vector. In particular, if z is a vector or matrix, you should return
% the gradient for each element.
g = zeros(size(z));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the gradient of the sigmoid function evaluated at
% each value of z (z can be a matrix, vector or scalar).
g=sigmoid(z).*(1-sigmoid(z));
% =============================================================
end