目前看来,yolo系列是工程上使用最为广泛的检测模型之一。yolov5检测性能优秀,部署便捷,备受广大开发者好评。但是,当模型在前端运行时,对模型尺寸与推理时间要求苛刻,轻量型模型yolov5s也难以招架。为了提高模型效率,这里与大家分享基于yolov5的模型剪枝方法 github分享连接。
本次使用稀疏训练对channel维度进行剪枝,来自论文Learning Efficient Convolutional Networks Through Network Slimming。其实原理很容易理解,我们知道bn层中存在两个可训练参数 γ , β \gamma,\beta γ,β,输入经过bn获得归一化后的分布。当 γ , β \gamma,\beta γ,β趋于0时,输入相当于乘上了0,那么,该channel上的卷积将只能输出0,毫无意义。因此,我们可以认为剔除这样的冗余channel对模型性能影响甚微。普通网络训练时,由于初始化, γ \gamma γ一般分布在1附近。为了使 γ \gamma γ趋于0,可以通过添加L1正则来约束,使得系数稀疏化,论文中将添加 γ \gamma γL1正则的训练称为稀疏训练。
整个剪枝的过程如下图所示,首先初始化网络,对bn层的参数添加L1正则并对网络训练。统计网络中的 γ \gamma γ,设置剪枝率对网络进行裁剪。最后,将裁减完的网络finetune,完成剪枝工作。
1.稀疏训练
上一章介绍了稀疏训练的原理,下面看一下代码是如何实现的。代码如下所示,首先,我们需要设置稀疏系数,稀疏系数对整个网络剪枝性能至关重要,设置太小的系数, γ \gamma γ趋于0的程度不高,无法对网络进行高强度的剪枝,但设置过大,会影响网络性能,大幅降低map。因此,我们需要通过实验找到合适的稀疏系数。
bn层的训练参数包括 γ , β \gamma,\beta γ,β,即代码中的m.weight,m.bias,loss.backward之后,在这两个参数的梯度上添加L1正则的梯度即可。
srtmp = opt.sr * (1 - 0.9 * epoch/epochs)
for k, m in model.named_modules():
if isinstance(m, nn.BatchNorm2d) and (k not in ignore_bn_list):
m.weight.grad.data.add_(srtmp * torch.sign(m.weight.data)) # L1
m.bias.grad.data.add_(opt.sr*10 * torch.sign(m.bias.data)) # L1
2.网络裁剪
上一步获得稀疏训练后的网络,接下来,我们需要将 γ \gamma γ趋于0的channel裁剪掉。首先,统计所有BN层的 γ \gamma γ,并对齐排序,找到剪枝率对应的阈值thre。
for i, layer in model.named_modules():
if isinstance(layer, nn.BatchNorm2d):
if i not in ignore_bn_list:
model_list[i] = layer
# bnw = layer.state_dict()['weight']
model_list = {k:v for k,v in model_list.items() if k not in ignore_bn_list}
prune_conv_list = [layer.replace("bn", "conv") for layer in model_list.keys()]
bn_weights = gather_bn_weights(model_list)
sorted_bn = torch.sort(bn_weights)[0]
thre_index = int(len(sorted_bn) * opt.percent)
thre = sorted_bn[thre_index]
然后,根据阈值获取每一bn层的mask,这里加了一些逻辑,目的是让剪枝后的channel保证是4的倍数,即复合前端加速要求。
def obtain_bn_mask(bn_module, thre):
thre = thre.cuda()
bn_layer = bn_module.weight.data.abs()
temp = abs(torch.sort(bn_layer)[0][3::4] - thre)
thre_temp = torch.sort(bn_layer)[0][3::4][temp.argmin()]
if int(temp.argmin()) == 0 and thre_temp > thre:
thre = -1
else:
thre = thre_temp
thre_index = int(bn_layer.shape[0] * 0.9)
if thre_index % 4 != 0:
thre_index -= thre_index % 4
thre_perbn = torch.sort(bn_layer)[0][thre_index - 1]
if thre_perbn < thre:
thre = min(thre, thre_perbn)
mask = bn_module.weight.data.abs().gt(thre).float()
return mask
由于,剪枝后的网络与原网络channel不能对齐,因此,我们需要重新定义网络,并解析网络。重构的网络结构需要重新定义,因为需要导入更多的参数。
pruned_yaml["backbone"] =[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3Pruned, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3Pruned, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3Pruned, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3Pruned, [1024]],
[-1, 1, SPPFPruned, [1024, 5]], # 9
]
pruned_yaml["head"] = [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3Pruned, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3Pruned, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3Pruned, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3Pruned, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
yolov5的backbone与neck存在C3结构,C3中存在shortcut,即存在两个卷积相加的形式。为了使网络能够正常add,我们需要对add的两个卷积mask进行merge操作。与此同时,网络存在concate,所以还需要记录concate来自于哪些层以及concate输出的层。
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
m = eval(m) if isinstance(m, str) else m # eval strings
for j, a in enumerate(args):
try:
args[j] = eval(a) if isinstance(a, str) else a # eval strings
except NameError:
pass
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
named_m_base = "model.{}".format(i)
if m in [Conv]:
named_m_bn = named_m_base + ".bn"
bnc = int(maskbndict[named_m_bn].sum())
c1, c2 = ch[f], bnc
args = [c1, c2, *args[1:]]
layertmp = named_m_bn
if i>0:
from_to_map[layertmp] = fromlayer[f]
fromlayer.append(named_m_bn)
elif m in [C3Pruned]:
named_m_cv1_bn = named_m_base + ".cv1.bn"
named_m_cv2_bn = named_m_base + ".cv2.bn"
named_m_cv3_bn = named_m_base + ".cv3.bn"
from_to_map[named_m_cv1_bn] = fromlayer[f]
from_to_map[named_m_cv2_bn] = fromlayer[f]
fromlayer.append(named_m_cv3_bn)
if len(args) == 1:
temp_mask = maskbndict[named_m_cv1_bn].bool() | maskbndict[named_m_base + '.m.0.cv2.bn'].bool()
maskbndict[named_m_cv1_bn], maskbndict[named_m_base + '.m.0.cv2.bn'] = temp_mask.float(), temp_mask.float()
if n > 1:
for repeat_ind in range(1, n):
temp_mask |= maskbndict[named_m_base + ".m.{}.cv2.bn".format(repeat_ind)].bool()
for re_ind in range(n):
maskbndict[named_m_base + ".m.{}.cv2.bn".format(re_ind)] = temp_mask
maskbndict[named_m_cv1_bn], maskbndict[named_m_base + '.m.0.cv2.bn'] = temp_mask.float(), temp_mask.float()
cv1in = ch[f]
cv1out = int(maskbndict[named_m_cv1_bn].sum())
cv2out = int(maskbndict[named_m_cv2_bn].sum())
cv3out = int(maskbndict[named_m_cv3_bn].sum())
args = [cv1in, cv1out, cv2out, cv3out, n, args[-1]]
bottle_args = []
chin = [cv1out]
c3fromlayer = [named_m_cv1_bn]
for p in range(n):
named_m_bottle_cv1_bn = named_m_base + ".m.{}.cv1.bn".format(p)
named_m_bottle_cv2_bn = named_m_base + ".m.{}.cv2.bn".format(p)
bottle_cv1in = chin[-1]
bottle_cv1out = int(maskbndict[named_m_bottle_cv1_bn].sum())
bottle_cv2out = int(maskbndict[named_m_bottle_cv2_bn].sum())
chin.append(bottle_cv2out)
bottle_args.append([bottle_cv1in, bottle_cv1out, bottle_cv2out])
from_to_map[named_m_bottle_cv1_bn] = c3fromlayer[p]
from_to_map[named_m_bottle_cv2_bn] = named_m_bottle_cv1_bn
c3fromlayer.append(named_m_bottle_cv2_bn)
args.insert(4, bottle_args)
c2 = cv3out
n = 1
from_to_map[named_m_cv3_bn] = [c3fromlayer[-1], named_m_cv2_bn]
elif m in [SPPFPruned]:
named_m_cv1_bn = named_m_base + ".cv1.bn"
named_m_cv2_bn = named_m_base + ".cv2.bn"
cv1in = ch[f]
from_to_map[named_m_cv1_bn] = fromlayer[f]
from_to_map[named_m_cv2_bn] = [named_m_cv1_bn]*4
fromlayer.append(named_m_cv2_bn)
cv1out = int(maskbndict[named_m_cv1_bn].sum())
cv2out = int(maskbndict[named_m_cv2_bn].sum())
args = [cv1in, cv1out, cv2out, *args[1:]]
c2 = cv2out
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum(ch[x] for x in f)
inputtmp = [fromlayer[x] for x in f]
fromlayer.append(inputtmp)
elif m is Detect:
from_to_map[named_m_base + ".m.0"] = fromlayer[f[0]]
from_to_map[named_m_base + ".m.1"] = fromlayer[f[1]]
from_to_map[named_m_base + ".m.2"] = fromlayer[f[2]]
args.append([ch[x] for x in f])
if isinstance(args[1], int): # number of anchors
args[1] = [list(range(args[1] * 2))] * len(f)
elif m is Contract:
c2 = ch[f] * args[0] ** 2
elif m is Expand:
c2 = ch[f] // args[0] ** 2
else:
c2 = ch[f]
fromtmp = fromlayer[-1]
fromlayer.append(fromtmp)
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace('__main__.', '') # module type
np = sum(x.numel() for x in m_.parameters()) # number params
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
if i == 0:
ch = []
ch.append(c2)
return nn.Sequential(*layers), sorted(save), from_to_map
重构并解析网络后,我们需要对解析后的网络填充参数,即找到解析后网络对应于原网络的各层参数,并clone赋值给重构后的网络,代码如下:
for ((layername, layer),(pruned_layername, pruned_layer)) in zip(model.named_modules(), pruned_model.named_modules()):
assert layername == pruned_layername
if isinstance(layer, nn.Conv2d) and not layername.startswith("model.24"):
convname = layername[:-4]+"bn"
if convname in from_to_map.keys():
former = from_to_map[convname]
if isinstance(former, str):
out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername[:-4] + "bn"].cpu().numpy())))
in_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[former].cpu().numpy())))
w = layer.weight.data[:, in_idx, :, :].clone()
if len(w.shape) ==3: # remain only 1 channel.
w = w.unsqueeze(1)
w = w[out_idx, :, :, :].clone()
pruned_layer.weight.data = w.clone()
changed_state.append(layername + ".weight")
if isinstance(former, list):
orignin = [modelstate[i+".weight"].shape[0] for i in former]
formerin = []
for it in range(len(former)):
name = former[it]
tmp = [i for i in range(maskbndict[name].shape[0]) if maskbndict[name][i] == 1]
if it > 0:
tmp = [k + sum(orignin[:it]) for k in tmp]
formerin.extend(tmp)
out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername[:-4] + "bn"].cpu().numpy())))
w = layer.weight.data[out_idx, :, :, :].clone()
pruned_layer.weight.data = w[:,formerin, :, :].clone()
changed_state.append(layername + ".weight")
else:
out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername[:-4] + "bn"].cpu().numpy())))
w = layer.weight.data[out_idx, :, :, :].clone()
assert len(w.shape) == 4
pruned_layer.weight.data = w.clone()
changed_state.append(layername + ".weight")
if isinstance(layer,nn.BatchNorm2d):
out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername].cpu().numpy())))
pruned_layer.weight.data = layer.weight.data[out_idx].clone()
pruned_layer.bias.data = layer.bias.data[out_idx].clone()
pruned_layer.running_mean = layer.running_mean[out_idx].clone()
pruned_layer.running_var = layer.running_var[out_idx].clone()
changed_state.append(layername + ".weight")
changed_state.append(layername + ".bias")
changed_state.append(layername + ".running_mean")
changed_state.append(layername + ".running_var")
changed_state.append(layername + ".num_batches_tracked")
if isinstance(layer, nn.Conv2d) and layername.startswith("model.24"):
former = from_to_map[layername]
in_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[former].cpu().numpy())))
pruned_layer.weight.data = layer.weight.data[:, in_idx, :, :]
pruned_layer.bias.data = layer.bias.data
changed_state.append(layername + ".weight")
changed_state.append(layername + ".bias")
至此,我们完成了剪枝的所有步骤。