很久之前读的网卡驱动源码,很多东西已经忘记了,最近面试被问道了网卡收数据包的全过程,只能答出一个很简单的过程,NAPI这种非常优秀的机制都没有想起来,很惭愧,重新复习了一下收包的过程,顺便把当时注释的代码贴出来,仅供参考。注释内容主要关注AM79C970A,为了方便阅读分成了几个代码块。
/* pcnet32.c: An AMD PCnet32 ethernet driver for linux. */
/*
* Copyright 1996-1999 Thomas Bogendoerfer
*
* Derived from the lance driver written 1993,1994,1995 by Donald Becker.
*
Copyright 1993 United States Government as represented by the
Director, National Security Agency.
*
This software may be used and distributed according to the terms
of the GNU General Public License, incorporated herein by reference.
*
This driver is for PCnet32 and PCnetPCI based ethercards
*/
/**************************************************************************
* 23 Oct, 2000.
* Fixed a few bugs, related to running the controller in 32bit mode.
*
* Carsten Langgaard, [email protected]
* Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved.
*
*************************************************************************/
#define DRV_NAME "pcnet32"
#ifdef CONFIG_PCNET32_NAPI
#define DRV_VERSION "1.34-NAPI"
#else
#define DRV_VERSION "1.34"
#endif
#define DRV_RELDATE "14.Aug.2007"
#define PFX DRV_NAME ": "
static const char *const version =
DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " [email protected]\n";
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
/*
* PCI device identifiers for "new style" Linux PCI Device Drivers
*/
static struct pci_device_id pcnet32_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_LANCE_HOME), },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_LANCE), },
/*
* Adapters that were sold with IBM's RS/6000 or pSeries hardware have
* the incorrect vendor id.
*/
{ PCI_DEVICE(PCI_VENDOR_ID_TRIDENT, PCI_DEVICE_ID_AMD_LANCE),
.class = (PCI_CLASS_NETWORK_ETHERNET << 8), .class_mask = 0xffff00, },
} /* terminate list */
};
MODULE_DEVICE_TABLE(pci, pcnet32_pci_tbl);
static int cards_found;
/*
* VLB I/O addresses
*/
static unsigned int pcnet32_portlist[] __initdata =
{ 0x300, 0x320, 0x340, 0x360, 0 };
static int pcnet32_debug = 0;
static int tx_start = 1; /* Mapping -- 0:20, 1:64, 2:128, 3:~220 (depends on chip vers) */
static int pcnet32vlb; /* check for VLB cards ? */
static struct net_device *pcnet32_dev;
static int max_interrupt_work = 2;
static int rx_copybreak = 200;
#define PCNET32_PORT_AUI 0x00
#define PCNET32_PORT_10BT 0x01
#define PCNET32_PORT_GPSI 0x02
#define PCNET32_PORT_MII 0x03
#define PCNET32_PORT_PORTSEL 0x03
#define PCNET32_PORT_ASEL 0x04
#define PCNET32_PORT_100 0x40
#define PCNET32_PORT_FD 0x80
#define PCNET32_DMA_MASK 0xffffffff
#define PCNET32_WATCHDOG_TIMEOUT (jiffies + (2 * HZ))
#define PCNET32_BLINK_TIMEOUT (jiffies + (HZ/4))
/*
* table to translate option values from tulip
* to internal options
*/
static const unsigned char options_mapping[] = {
PCNET32_PORT_ASEL, /* 0 Auto-select */
PCNET32_PORT_AUI, /* 1 BNC/AUI */
PCNET32_PORT_AUI, /* 2 AUI/BNC */
PCNET32_PORT_ASEL, /* 3 not supported */
PCNET32_PORT_10BT | PCNET32_PORT_FD, /* 4 10baseT-FD */
PCNET32_PORT_ASEL, /* 5 not supported */
PCNET32_PORT_ASEL, /* 6 not supported */
PCNET32_PORT_ASEL, /* 7 not supported */
PCNET32_PORT_ASEL, /* 8 not supported */
PCNET32_PORT_MII, /* 9 MII 10baseT */
PCNET32_PORT_MII | PCNET32_PORT_FD, /* 10 MII 10baseT-FD */
PCNET32_PORT_MII, /* 11 MII (autosel) */
PCNET32_PORT_10BT, /* 12 10BaseT */
PCNET32_PORT_MII | PCNET32_PORT_100, /* 13 MII 100BaseTx */
/* 14 MII 100BaseTx-FD */
PCNET32_PORT_MII | PCNET32_PORT_100 | PCNET32_PORT_FD,
PCNET32_PORT_ASEL /* 15 not supported */
};
static const char pcnet32_gstrings_test[][ETH_GSTRING_LEN] = {
"Loopback test (offline)"
};
#define PCNET32_TEST_LEN ARRAY_SIZE(pcnet32_gstrings_test)
#define PCNET32_NUM_REGS 136
#define MAX_UNITS 8 /* More are supported, limit only on options */
static int options[MAX_UNITS];
static int full_duplex[MAX_UNITS];
static int homepna[MAX_UNITS];
/*
* Theory of Operation
*
* This driver uses the same software structure as the normal lance
* driver. So look for a verbose description in lance.c. The differences
* to the normal lance driver is the use of the 32bit mode of PCnet32
* and PCnetPCI chips. Because these chips are 32bit chips, there is no
* 16MB limitation and we don't need bounce buffers.
*/
/*
* Set the number of Tx and Rx buffers, using Log_2(# buffers).
* Reasonable default values are 4 Tx buffers, and 16 Rx buffers.
* That translates to 2 (4 == 2^^2) and 4 (16 == 2^^4).
*/
#ifndef PCNET32_LOG_TX_BUFFERS
#define PCNET32_LOG_TX_BUFFERS 4
#define PCNET32_LOG_RX_BUFFERS 5
#define PCNET32_LOG_MAX_TX_BUFFERS 9 /* 2^9 == 512 */
#define PCNET32_LOG_MAX_RX_BUFFERS 9
#endif
#define TX_RING_SIZE (1 << (PCNET32_LOG_TX_BUFFERS))
#define TX_MAX_RING_SIZE (1 << (PCNET32_LOG_MAX_TX_BUFFERS))
#define RX_RING_SIZE (1 << (PCNET32_LOG_RX_BUFFERS))
#define RX_MAX_RING_SIZE (1 << (PCNET32_LOG_MAX_RX_BUFFERS))
#define PKT_BUF_SKB 1544
/* actual buffer length after being aligned */
#define PKT_BUF_SIZE (PKT_BUF_SKB - NET_IP_ALIGN)
/* chip wants twos complement of the (aligned) buffer length */
#define NEG_BUF_SIZE (NET_IP_ALIGN - PKT_BUF_SKB)
/* Offsets from base I/O address. */
#define PCNET32_WIO_RDP 0x10
#define PCNET32_WIO_RAP 0x12
#define PCNET32_WIO_RESET 0x14
#define PCNET32_WIO_BDP 0x16
#define PCNET32_DWIO_RDP 0x10
#define PCNET32_DWIO_RAP 0x14
#define PCNET32_DWIO_RESET 0x18
#define PCNET32_DWIO_BDP 0x1C
#define PCNET32_TOTAL_SIZE 0x20
#define CSR0 0
#define CSR0_INIT 0x1
#define CSR0_START 0x2
#define CSR0_STOP 0x4
#define CSR0_TXPOLL 0x8
#define CSR0_INTEN 0x40
#define CSR0_IDON 0x0100
#define CSR0_NORMAL (CSR0_START | CSR0_INTEN)
#define PCNET32_INIT_LOW 1
#define PCNET32_INIT_HIGH 2
#define CSR3 3
#define CSR4 4
#define CSR5 5
#define CSR5_SUSPEND 0x0001
#define CSR15 15
#define PCNET32_MC_FILTER 8
#define PCNET32_79C970A 0x2621
/* The PCNET32 Rx and Tx ring descriptors. */
struct pcnet32_rx_head {
__le32 base;///存储该描述符对应的缓冲区的首地址
__le16 buf_length; /* two`s complement of length */ ///二进制补码形式,缓冲区大小
__le16 status;每一位都有自己的含义,硬件手册有规定
__le32 msg_length;
__le32 reserved;
};
struct pcnet32_tx_head {
__le32 base;
__le16 length; /* two`s complement of length */
__le16 status;
__le32 misc; ///用于错误标示和计数,详见硬件手册
__le32 reserved;
};
//* The PCNET32 32-Bit initialization block, described in databook. */
/*
*The Mode Register (CSR15) allows alteration of the chip’s operating
*parameters. The Mode field of the Initialization Block is copied directly
*into CSR15. Normal operation is the result of configuring the Mode field
*with all bits zero.
*/
struct pcnet32_init_block {
__le16 mode;
__le16 tlen_rlen;
u8 phys_addr[6];
__le16 reserved;
__le32 filter[2];
/* Receive and transmit ring base, along with extra bits. */
__le32 rx_ring;
__le32 tx_ring;
};
/* PCnet32 access functions */
struct pcnet32_access {
u16 (*read_csr) (unsigned long, int);
void (*write_csr) (unsigned long, int, u16);
u16 (*read_bcr) (unsigned long, int);
void (*write_bcr) (unsigned long, int, u16);
u16 (*read_rap) (unsigned long);
void (*write_rap) (unsigned long, u16);
void (*reset) (unsigned long);
};
/*
* The first field of pcnet32_private is read by the ethernet device
* so the structure should be allocated using pci_alloc_consistent().
*/
struct pcnet32_private {
struct pcnet32_init_block *init_block;
/* The Tx and Rx ring entries must be aligned on 16-byte boundaries in 32bit mode. */
struct pcnet32_rx_head *rx_ring;
struct pcnet32_tx_head *tx_ring;
dma_addr_t init_dma_addr;/* DMA address of beginning of the init block,
returned by pci_alloc_consistent */
struct pci_dev *pci_dev;
const char *name;
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
struct sk_buff **tx_skbuff;
struct sk_buff **rx_skbuff;
dma_addr_t *tx_dma_addr;
dma_addr_t *rx_dma_addr;
struct pcnet32_access a;
spinlock_t lock; /* Guard lock */
unsigned int cur_rx, cur_tx; /* The next free ring entry */
unsigned int rx_ring_size; /* current rx ring size */
unsigned int tx_ring_size; /* current tx ring size */
unsigned int rx_mod_mask; /* rx ring modular mask */
unsigned int tx_mod_mask; /* tx ring modular mask */
unsigned short rx_len_bits;
unsigned short tx_len_bits;
dma_addr_t rx_ring_dma_addr;
dma_addr_t tx_ring_dma_addr;
unsigned int dirty_rx, /* ring entries to be freed. */
dirty_tx;
struct net_device *dev;
struct napi_struct napi;
char tx_full;
char phycount; /* number of phys found */
int options;
///shared_irq为1时表示irq是共享的(allow sharing the irq among several devices),为0表示不共享
unsigned int shared_irq:1, /* shared irq possible */
dxsuflo:1, /* disable transmit stop on uflo */
mii:1; /* mii port available */
struct net_device *next;
struct mii_if_info mii_if;
struct timer_list watchdog_timer;
struct timer_list blink_timer;
u32 msg_enable; /* debug message level */
/* each bit indicates an available PHY */
u32 phymask;
unsigned short chip_version; /* which variant this is */
};
static int pcnet32_probe_pci(struct pci_dev *, const struct pci_device_id *);
static int pcnet32_probe1(unsigned long, int, struct pci_dev *);
static int pcnet32_open(struct net_device *);
static int pcnet32_init_ring(struct net_device *);
static int pcnet32_start_xmit(struct sk_buff *, struct net_device *);
static void pcnet32_tx_timeout(struct net_device *dev);
static irqreturn_t pcnet32_interrupt(int, void *);
static int pcnet32_close(struct net_device *);
static struct net_device_stats *pcnet32_get_stats(struct net_device *);
static void pcnet32_load_multicast(struct net_device *dev);
static void pcnet32_set_multicast_list(struct net_device *);
static int pcnet32_ioctl(struct net_device *, struct ifreq *, int);
static void pcnet32_watchdog(struct net_device *);
static int mdio_read(struct net_device *dev, int phy_id, int reg_num);
static void mdio_write(struct net_device *dev, int phy_id, int reg_num,
int val);
static void pcnet32_restart(struct net_device *dev, unsigned int csr0_bits);
static void pcnet32_ethtool_test(struct net_device *dev,
struct ethtool_test *eth_test, u64 * data);
static int pcnet32_loopback_test(struct net_device *dev, uint64_t * data1);
static int pcnet32_phys_id(struct net_device *dev, u32 data);
static void pcnet32_led_blink_callback(struct net_device *dev);
static int pcnet32_get_regs_len(struct net_device *dev);
static void pcnet32_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *ptr);
static void pcnet32_purge_tx_ring(struct net_device *dev);
static int pcnet32_alloc_ring(struct net_device *dev, char *name);
static void pcnet32_free_ring(struct net_device *dev);
static void pcnet32_check_media(struct net_device *dev, int verbose);
/*
工作在16-bit IO mode下,要读取第index个CSR的值,首先往RAP中写入index,然后再从RDP
中读取数据(此时读到的数据就是第index个CSR低16bit的数据),
*/
static u16 pcnet32_wio_read_csr(unsigned long addr, int index)
{
outw(index, addr + PCNET32_WIO_RAP);
return inw(addr + PCNET32_WIO_RDP);
}
/*工作在16-bit IO mode下,要往第index个CSR中写入数据,首先往RAP中写入index,然后
再往RDP中写入数据(数据会自动被写入CSR index),写入数据超过16bit的话,高位会被忽略掉*/
static void pcnet32_wio_write_csr(unsigned long addr, int index, u16 val)
{
outw(index, addr + PCNET32_WIO_RAP);
outw(val, addr + PCNET32_WIO_RDP);
}
/*
与static u16 pcnet32_wio_read_csr(unsigned long addr, int index)访问方
式类似,唯一不同的是读取数据是从BDP中读取
*/
static u16 pcnet32_wio_read_bcr(unsigned long addr, int index)
{
outw(index, addr + PCNET32_WIO_RAP);
return inw(addr + PCNET32_WIO_BDP);
}
/*
与static void pcnet32_wio_write_csr(unsigned long addr, int index, u16
val)访问方式类似,唯一不同的是读取数据是从BDP中读取
*/
static void pcnet32_wio_write_bcr(unsigned long addr, int index, u16 val)
{
outw(index, addr + PCNET32_WIO_RAP);
outw(val, addr + PCNET32_WIO_BDP);
}
static u16 pcnet32_wio_read_rap(unsigned long addr)
{
return inw(addr + PCNET32_WIO_RAP);
}
static void pcnet32_wio_write_rap(unsigned long addr, u16 val)
{
outw(val, addr + PCNET32_WIO_RAP);
}
///Reset causes the device to cease operation and clear its internal logic.
static void pcnet32_wio_reset(unsigned long addr)
{
///read access to the RESET address (i.e., offset 0x14 for 16-bit I/O, offset 0x18 for 32-bit I/O),
inw(addr + PCNET32_WIO_RESET); /// addr + 0x14
}
static int pcnet32_wio_check(unsigned long addr)
{
outw(88, addr + PCNET32_WIO_RAP);
return (inw(addr + PCNET32_WIO_RAP) == 88);
}
static struct pcnet32_access pcnet32_wio = {
.read_csr = pcnet32_wio_read_csr,
.write_csr = pcnet32_wio_write_csr,
.read_bcr = pcnet32_wio_read_bcr,
.write_bcr = pcnet32_wio_write_bcr,
.read_rap = pcnet32_wio_read_rap,
.write_rap = pcnet32_wio_write_rap,
.reset = pcnet32_wio_reset
};
static u16 pcnet32_dwio_read_csr(unsigned long addr, int index)
{
outl(index, addr + PCNET32_DWIO_RAP);
return (inl(addr + PCNET32_DWIO_RDP) & 0xffff);
}
static void pcnet32_dwio_write_csr(unsigned long addr, int index, u16 val)
{
outl(index, addr + PCNET32_DWIO_RAP);
outl(val, addr + PCNET32_DWIO_RDP);
}
static u16 pcnet32_dwio_read_bcr(unsigned long addr, int index)
{
outl(index, addr + PCNET32_DWIO_RAP);
return (inl(addr + PCNET32_DWIO_BDP) & 0xffff);
}
static void pcnet32_dwio_write_bcr(unsigned long addr, int index, u16 val)
{
outl(index, addr + PCNET32_DWIO_RAP);
outl(val, addr + PCNET32_DWIO_BDP);
}
static u16 pcnet32_dwio_read_rap(unsigned long addr)
{
return (inl(addr + PCNET32_DWIO_RAP) & 0xffff);
}
static void pcnet32_dwio_write_rap(unsigned long addr, u16 val)
{
outl(val, addr + PCNET32_DWIO_RAP);
}
static void pcnet32_dwio_reset(unsigned long addr)
{
inl(addr + PCNET32_DWIO_RESET);
}
static int pcnet32_dwio_check(unsigned long addr)
{
outl(88, addr + PCNET32_DWIO_RAP);
return ((inl(addr + PCNET32_DWIO_RAP) & 0xffff) == 88);
}
static struct pcnet32_access pcnet32_dwio = {
.read_csr = pcnet32_dwio_read_csr,
.write_csr = pcnet32_dwio_write_csr,
.read_bcr = pcnet32_dwio_read_bcr,
.write_bcr = pcnet32_dwio_write_bcr,
.read_rap = pcnet32_dwio_read_rap,
.write_rap = pcnet32_dwio_write_rap,
.reset = pcnet32_dwio_reset
};
static void pcnet32_netif_stop(struct net_device *dev)
{
#ifdef CONFIG_PCNET32_NAPI
struct pcnet32_private *lp = netdev_priv(dev);
#endif
dev->trans_start = jiffies;
#ifdef CONFIG_PCNET32_NAPI
napi_disable(&lp->napi);
#endif
netif_tx_disable(dev);
}
static void pcnet32_netif_start(struct net_device *dev)
{
#ifdef CONFIG_PCNET32_NAPI
struct pcnet32_private *lp = netdev_priv(dev);
ulong ioaddr = dev->base_addr;
u16 val;
#endif
netif_wake_queue(dev);
#ifdef CONFIG_PCNET32_NAPI
val = lp->a.read_csr(ioaddr, CSR3);
val &= 0x00ff;
lp->a.write_csr(ioaddr, CSR3, val);
napi_enable(&lp->napi);
#endif
}
/*
* Allocate space for the new sized tx ring.
* Free old resources
* Save new resources.
* Any failure keeps old resources.
* Must be called with lp->lock held.
*/
static void pcnet32_realloc_tx_ring(struct net_device *dev,
struct pcnet32_private *lp,
unsigned int size)
{
dma_addr_t new_ring_dma_addr;
dma_addr_t *new_dma_addr_list;
struct pcnet32_tx_head *new_tx_ring;
struct sk_buff **new_skb_list;
pcnet32_purge_tx_ring(dev);
new_tx_ring = pci_alloc_consistent(lp->pci_dev,
sizeof(struct pcnet32_tx_head) *
(1 << size),
&new_ring_dma_addr);
if (new_tx_ring == NULL) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR
"%s: Consistent memory allocation failed.\n",
dev->name);
return;
}
memset(new_tx_ring, 0, sizeof(struct pcnet32_tx_head) * (1 << size));
new_dma_addr_list = kcalloc((1 << size), sizeof(dma_addr_t),
GFP_ATOMIC);
if (!new_dma_addr_list) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR
"%s: Memory allocation failed.\n", dev->name);
goto free_new_tx_ring;
}
new_skb_list = kcalloc((1 << size), sizeof(struct sk_buff *),
GFP_ATOMIC);
if (!new_skb_list) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR
"%s: Memory allocation failed.\n", dev->name);
goto free_new_lists;
}
kfree(lp->tx_skbuff);
kfree(lp->tx_dma_addr);
pci_free_consistent(lp->pci_dev,
sizeof(struct pcnet32_tx_head) *
lp->tx_ring_size, lp->tx_ring,
lp->tx_ring_dma_addr);
lp->tx_ring_size = (1 << size);
lp->tx_mod_mask = lp->tx_ring_size - 1;
lp->tx_len_bits = (size << 12);
lp->tx_ring = new_tx_ring;
lp->tx_ring_dma_addr = new_ring_dma_addr;
lp->tx_dma_addr = new_dma_addr_list;
lp->tx_skbuff = new_skb_list;
return;
free_new_lists:
kfree(new_dma_addr_list);
free_new_tx_ring:
pci_free_consistent(lp->pci_dev,
sizeof(struct pcnet32_tx_head) *
(1 << size),
new_tx_ring,
new_ring_dma_addr);
return;
}
/*
* Allocate space for the new sized rx ring.
* Re-use old receive buffers.
* alloc extra buffers
* free unneeded buffers
* free unneeded buffers
* Save new resources.
* Any failure keeps old resources.
* Must be called with lp->lock held.
*/
static void pcnet32_realloc_rx_ring(struct net_device *dev,
struct pcnet32_private *lp,
unsigned int size)
{
dma_addr_t new_ring_dma_addr;
dma_addr_t *new_dma_addr_list;
struct pcnet32_rx_head *new_rx_ring;
struct sk_buff **new_skb_list;
int new, overlap;
new_rx_ring = pci_alloc_consistent(lp->pci_dev,
sizeof(struct pcnet32_rx_head) *
(1 << size),
&new_ring_dma_addr);
if (new_rx_ring == NULL) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR
"%s: Consistent memory allocation failed.\n",
dev->name);
return;
}
memset(new_rx_ring, 0, sizeof(struct pcnet32_rx_head) * (1 << size));
new_dma_addr_list = kcalloc((1 << size), sizeof(dma_addr_t),
GFP_ATOMIC);
if (!new_dma_addr_list) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR
"%s: Memory allocation failed.\n", dev->name);
goto free_new_rx_ring;
}
new_skb_list = kcalloc((1 << size), sizeof(struct sk_buff *),
GFP_ATOMIC);
if (!new_skb_list) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR
"%s: Memory allocation failed.\n", dev->name);
goto free_new_lists;
}
/* first copy the current receive buffers */
overlap = min(size, lp->rx_ring_size);
for (new = 0; new < overlap; new++) {
new_rx_ring[new] = lp->rx_ring[new];
new_dma_addr_list[new] = lp->rx_dma_addr[new];
new_skb_list[new] = lp->rx_skbuff[new];
}
/* now allocate any new buffers needed */
for (; new < size; new++ ) {
struct sk_buff *rx_skbuff;
new_skb_list[new] = dev_alloc_skb(PKT_BUF_SKB);
if (!(rx_skbuff = new_skb_list[new])) {
/* keep the original lists and buffers */
if (netif_msg_drv(lp))
printk(KERN_ERR
"%s: pcnet32_realloc_rx_ring dev_alloc_skb failed.\n",
dev->name);
goto free_all_new;
}
skb_reserve(rx_skbuff, NET_IP_ALIGN);
new_dma_addr_list[new] =
pci_map_single(lp->pci_dev, rx_skbuff->data,
PKT_BUF_SIZE, PCI_DMA_FROMDEVICE);
new_rx_ring[new].base = cpu_to_le32(new_dma_addr_list[new]);
new_rx_ring[new].buf_length = cpu_to_le16(NEG_BUF_SIZE);
new_rx_ring[new].status = cpu_to_le16(0x8000);
}
/* and free any unneeded buffers */
for (; new < lp->rx_ring_size; new++) {
if (lp->rx_skbuff[new]) {
pci_unmap_single(lp->pci_dev, lp->rx_dma_addr[new],
PKT_BUF_SIZE, PCI_DMA_FROMDEVICE);
dev_kfree_skb(lp->rx_skbuff[new]);
}
}
kfree(lp->rx_skbuff);
kfree(lp->rx_dma_addr);
pci_free_consistent(lp->pci_dev,
sizeof(struct pcnet32_rx_head) *
lp->rx_ring_size, lp->rx_ring,
lp->rx_ring_dma_addr);
lp->rx_ring_size = (1 << size);
lp->rx_mod_mask = lp->rx_ring_size - 1;
lp->rx_len_bits = (size << 4);
lp->rx_ring = new_rx_ring;
lp->rx_ring_dma_addr = new_ring_dma_addr;
lp->rx_dma_addr = new_dma_addr_list;
lp->rx_skbuff = new_skb_list;
return;
free_all_new:
for (; --new >= lp->rx_ring_size; ) {
if (new_skb_list[new]) {
pci_unmap_single(lp->pci_dev, new_dma_addr_list[new],
PKT_BUF_SIZE, PCI_DMA_FROMDEVICE);
dev_kfree_skb(new_skb_list[new]);
}
}
kfree(new_skb_list);
free_new_lists:
kfree(new_dma_addr_list);
free_new_rx_ring:
pci_free_consistent(lp->pci_dev,
sizeof(struct pcnet32_rx_head) *
(1 << size),
new_rx_ring,
new_ring_dma_addr);
return;
}
////释放分配给lp->rx_skbuff的DMA缓冲区,是发生错误后的处理函数
static void pcnet32_purge_rx_ring(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
int i;
/* free all allocated skbuffs */
for (i = 0; i < lp->rx_ring_size; i++) {
lp->rx_ring[i].status = 0; /* CPU owns buffer */
wmb(); /* Make sure adapter sees owner change */
if (lp->rx_skbuff[i]) {
pci_unmap_single(lp->pci_dev, lp->rx_dma_addr[i],
PKT_BUF_SIZE, PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(lp->rx_skbuff[i]);
}
lp->rx_skbuff[i] = NULL;
lp->rx_dma_addr[i] = 0;
}
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
* 第一步:关中断,我们平时说的关CPU的中断,指的应该是全关,而不是仅关掉一个吧
* 第二步:进行中断处理(这个不是中断服务程序吧??
* 第三部:中断处理结束后,开中断
*/
static void pcnet32_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
pcnet32_interrupt(0, dev);
enable_irq(dev->irq);
}
#endif
static int pcnet32_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long flags;
int r = -EOPNOTSUPP;
if (lp->mii) {
spin_lock_irqsave(&lp->lock, flags);
mii_ethtool_gset(&lp->mii_if, cmd);
spin_unlock_irqrestore(&lp->lock, flags);
r = 0;
}
return r;
}
static int pcnet32_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long flags;
int r = -EOPNOTSUPP;
if (lp->mii) {
spin_lock_irqsave(&lp->lock, flags);
r = mii_ethtool_sset(&lp->mii_if, cmd);
spin_unlock_irqrestore(&lp->lock, flags);
}
return r;
}
///读取驱动的名字,版本,pci设备的名字(对于PCI总线即pdev->dev.bus_id),并放入ethtool_drvinfo结构体中
static void pcnet32_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct pcnet32_private *lp = netdev_priv(dev);
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
if (lp->pci_dev)
strcpy(info->bus_info, pci_name(lp->pci_dev));
else
sprintf(info->bus_info, "VLB 0x%lx", dev->base_addr);
}
///判断当前链接状态,正常返回0,异常返回1
static u32 pcnet32_get_link(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long flags;
int r;
spin_lock_irqsave(&lp->lock, flags);
if (lp->mii) {
r = mii_link_ok(&lp->mii_if);
} else if (lp->chip_version >= PCNET32_79C970A) {
ulong ioaddr = dev->base_addr; /* card base I/O address */
r = (lp->a.read_bcr(ioaddr, 4) != 0xc0); ////0xc0 = 1100 0000
} else { /* can not detect link on really old chips */
r = 1;
}
spin_unlock_irqrestore(&lp->lock, flags);
return r;
}
////返回dev的msg_enable(即debug level)
static u32 pcnet32_get_msglevel(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
return lp->msg_enable;
}
///把dev的msg_enable(即debug level)设置为value
static void pcnet32_set_msglevel(struct net_device *dev, u32 value)
{
struct pcnet32_private *lp = netdev_priv(dev);
lp->msg_enable = value;
}
////因为VMware提供的虚拟网卡是AM79C970A,所以lp->mii=0,函数什么都没做,直接返回 -EOPNOTSUPP
static int pcnet32_nway_reset(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long flags;
int r = -EOPNOTSUPP;
if (lp->mii) {
spin_lock_irqsave(&lp->lock, flags);
r = mii_nway_restart(&lp->mii_if);
spin_unlock_irqrestore(&lp->lock, flags);
}
return r;
}
////把最大rx ring 和 tx ring大小的最大值和当前值
static void pcnet32_get_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct pcnet32_private *lp = netdev_priv(dev);
ering->tx_max_pending = TX_MAX_RING_SIZE;
ering->tx_pending = lp->tx_ring_size;
ering->rx_max_pending = RX_MAX_RING_SIZE;
ering->rx_pending = lp->rx_ring_size;
}
static int pcnet32_set_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long flags;
unsigned int size;
ulong ioaddr = dev->base_addr;
int i;
if (ering->rx_mini_pending || ering->rx_jumbo_pending)
return -EINVAL;
if (netif_running(dev))
pcnet32_netif_stop(dev);
spin_lock_irqsave(&lp->lock, flags);
lp->a.write_csr(ioaddr, CSR0, CSR0_STOP); /* stop the chip */
size = min(ering->tx_pending, (unsigned int)TX_MAX_RING_SIZE);
/* set the minimum ring size to 4, to allow the loopback test to work
* unchanged.
*/
for (i = 2; i <= PCNET32_LOG_MAX_TX_BUFFERS; i++) {
if (size <= (1 << i))
break;
}
if ((1 << i) != lp->tx_ring_size)
pcnet32_realloc_tx_ring(dev, lp, i);
size = min(ering->rx_pending, (unsigned int)RX_MAX_RING_SIZE);
for (i = 2; i <= PCNET32_LOG_MAX_RX_BUFFERS; i++) {
if (size <= (1 << i))
break;
}
if ((1 << i) != lp->rx_ring_size)
pcnet32_realloc_rx_ring(dev, lp, i);
lp->napi.weight = lp->rx_ring_size / 2;
if (netif_running(dev)) {
pcnet32_netif_start(dev);
pcnet32_restart(dev, CSR0_NORMAL);
}
spin_unlock_irqrestore(&lp->lock, flags);
if (netif_msg_drv(lp))
printk(KERN_INFO
"%s: Ring Param Settings: RX: %d, TX: %d\n", dev->name,
lp->rx_ring_size, lp->tx_ring_size);
return 0;
}
static void pcnet32_get_strings(struct net_device *dev, u32 stringset,
u8 * data)
{
memcpy(data, pcnet32_gstrings_test, sizeof(pcnet32_gstrings_test));
}
static int pcnet32_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_TEST:
return PCNET32_TEST_LEN;
default:
return -EOPNOTSUPP;
}
}
static void pcnet32_ethtool_test(struct net_device *dev,
struct ethtool_test *test, u64 * data)
{
struct pcnet32_private *lp = netdev_priv(dev);
int rc;
if (test->flags == ETH_TEST_FL_OFFLINE) {
rc = pcnet32_loopback_test(dev, data);
if (rc) {
if (netif_msg_hw(lp))
printk(KERN_DEBUG "%s: Loopback test failed.\n",
dev->name);
test->flags |= ETH_TEST_FL_FAILED;
} else if (netif_msg_hw(lp))
printk(KERN_DEBUG "%s: Loopback test passed.\n",
dev->name);
} else if (netif_msg_hw(lp))
printk(KERN_DEBUG
"%s: No tests to run (specify 'Offline' on ethtool).",
dev->name);
} /* end pcnet32_ethtool_test */
static int pcnet32_loopback_test(struct net_device *dev, uint64_t * data1)
{
struct pcnet32_private *lp = netdev_priv(dev);
struct pcnet32_access *a = &lp->a; /* access to registers */
ulong ioaddr = dev->base_addr; /* card base I/O address */
struct sk_buff *skb; /* sk buff */
int x, i; /* counters */
int numbuffs = 4; /* number of TX/RX buffers and descs */
u16 status = 0x8300; /* TX ring status */
__le16 teststatus; /* test of ring status */
int rc; /* return code */
int size; /* size of packets */
unsigned char *packet; /* source packet data */
static const int data_len = 60; /* length of source packets */
unsigned long flags;
unsigned long ticks;
rc = 1; /* default to fail */
if (netif_running(dev))
#ifdef CONFIG_PCNET32_NAPI
pcnet32_netif_stop(dev);
#else
pcnet32_close(dev);
#endif
spin_lock_irqsave(&lp->lock, flags);
lp->a.write_csr(ioaddr, CSR0, CSR0_STOP); /* stop the chip */
numbuffs = min(numbuffs, (int)min(lp->rx_ring_size, lp->tx_ring_size));
/* Reset the PCNET32 */
lp->a.reset(ioaddr);
lp->a.write_csr(ioaddr, CSR4, 0x0915); /* auto tx pad */
/* switch pcnet32 to 32bit mode */
lp->a.write_bcr(ioaddr, 20, 2);
/* purge & init rings but don't actually restart */
pcnet32_restart(dev, 0x0000);
lp->a.write_csr(ioaddr, CSR0, CSR0_STOP); /* Set STOP bit */
/* Initialize Transmit buffers. */
size = data_len + 15;
for (x = 0; x < numbuffs; x++) {
if (!(skb = dev_alloc_skb(size))) {
if (netif_msg_hw(lp))
printk(KERN_DEBUG
"%s: Cannot allocate skb at line: %d!\n",
dev->name, __LINE__);
goto clean_up;
} else {
packet = skb->data;
skb_put(skb, size); /* create space for data */
lp->tx_skbuff[x] = skb;
lp->tx_ring[x].length = cpu_to_le16(-skb->len);
lp->tx_ring[x].misc = 0;
/* put DA and SA into the skb */
for (i = 0; i < 6; i++)
*packet++ = dev->dev_addr[i];
for (i = 0; i < 6; i++)
*packet++ = dev->dev_addr[i];
/* type */
*packet++ = 0x08;
*packet++ = 0x06;
/* packet number */
*packet++ = x;
/* fill packet with data */
for (i = 0; i < data_len; i++)
*packet++ = i;
lp->tx_dma_addr[x] =
pci_map_single(lp->pci_dev, skb->data, skb->len,
PCI_DMA_TODEVICE);
lp->tx_ring[x].base = cpu_to_le32(lp->tx_dma_addr[x]);
wmb(); /* Make sure owner changes after all others are visible */
lp->tx_ring[x].status = cpu_to_le16(status);
}
}
x = a->read_bcr(ioaddr, 32); /* set internal loopback in BCR32 */
a->write_bcr(ioaddr, 32, x | 0x0002);
/* set int loopback in CSR15 */
x = a->read_csr(ioaddr, CSR15) & 0xfffc;
lp->a.write_csr(ioaddr, CSR15, x | 0x0044);
teststatus = cpu_to_le16(0x8000);
lp->a.write_csr(ioaddr, CSR0, CSR0_START); /* Set STRT bit */
/* Check status of descriptors */
for (x = 0; x < numbuffs; x++) {
ticks = 0;
rmb();
while ((lp->rx_ring[x].status & teststatus) && (ticks < 200)) {
spin_unlock_irqrestore(&lp->lock, flags);
msleep(1);
spin_lock_irqsave(&lp->lock, flags);
rmb();
ticks++;
}
if (ticks == 200) {
if (netif_msg_hw(lp))
printk("%s: Desc %d failed to reset!\n",
dev->name, x);
break;
}
}
lp->a.write_csr(ioaddr, CSR0, CSR0_STOP); /* Set STOP bit */
wmb();
if (netif_msg_hw(lp) && netif_msg_pktdata(lp)) {
printk(KERN_DEBUG "%s: RX loopback packets:\n", dev->name);
for (x = 0; x < numbuffs; x++) {
printk(KERN_DEBUG "%s: Packet %d:\n", dev->name, x);
skb = lp->rx_skbuff[x];
for (i = 0; i < size; i++) {
printk("%02x ", *(skb->data + i));
}
printk("\n");
}
}
x = 0;
rc = 0;
while (x < numbuffs && !rc) {
skb = lp->rx_skbuff[x];
packet = lp->tx_skbuff[x]->data;
for (i = 0; i < size; i++) {
if (*(skb->data + i) != packet[i]) {
if (netif_msg_hw(lp))
printk(KERN_DEBUG
"%s: Error in compare! %2x - %02x %02x\n",
dev->name, i, *(skb->data + i),
packet[i]);
rc = 1;
break;
}
}
x++;
}
clean_up:
*data1 = rc;
pcnet32_purge_tx_ring(dev);
x = a->read_csr(ioaddr, CSR15);
a->write_csr(ioaddr, CSR15, (x & ~0x0044)); /* reset bits 6 and 2 */
x = a->read_bcr(ioaddr, 32); /* reset internal loopback */
a->write_bcr(ioaddr, 32, (x & ~0x0002));
#ifdef CONFIG_PCNET32_NAPI
if (netif_running(dev)) {
pcnet32_netif_start(dev);
pcnet32_restart(dev, CSR0_NORMAL);
} else {
pcnet32_purge_rx_ring(dev);
lp->a.write_bcr(ioaddr, 20, 4); /* return to 16bit mode */
}
spin_unlock_irqrestore(&lp->lock, flags);
#else
if (netif_running(dev)) {
spin_unlock_irqrestore(&lp->lock, flags);
pcnet32_open(dev);
} else {
pcnet32_purge_rx_ring(dev);
lp->a.write_bcr(ioaddr, 20, 4); /* return to 16bit mode */
spin_unlock_irqrestore(&lp->lock, flags);
}
#endif
return (rc);
} /* end pcnet32_loopback_test */
static void pcnet32_led_blink_callback(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
struct pcnet32_access *a = &lp->a;
ulong ioaddr = dev->base_addr;
unsigned long flags;
int i;
spin_lock_irqsave(&lp->lock, flags);
for (i = 4; i < 8; i++) {
a->write_bcr(ioaddr, i, a->read_bcr(ioaddr, i) ^ 0x4000);
}
spin_unlock_irqrestore(&lp->lock, flags);
mod_timer(&lp->blink_timer, PCNET32_BLINK_TIMEOUT);
}
static int pcnet32_phys_id(struct net_device *dev, u32 data)
{
struct pcnet32_private *lp = netdev_priv(dev);
struct pcnet32_access *a = &lp->a;
ulong ioaddr = dev->base_addr;
unsigned long flags;
int i, regs[4];
if (!lp->blink_timer.function) {
init_timer(&lp->blink_timer);
lp->blink_timer.function = (void *)pcnet32_led_blink_callback;
lp->blink_timer.data = (unsigned long)dev;
}
/* Save the current value of the bcrs */
spin_lock_irqsave(&lp->lock, flags);
for (i = 4; i < 8; i++) {
regs[i - 4] = a->read_bcr(ioaddr, i);
}
spin_unlock_irqrestore(&lp->lock, flags);
mod_timer(&lp->blink_timer, jiffies);
set_current_state(TASK_INTERRUPTIBLE);
/* AV: the limit here makes no sense whatsoever */
if ((!data) || (data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ)))
data = (u32) (MAX_SCHEDULE_TIMEOUT / HZ);
msleep_interruptible(data * 1000);
del_timer_sync(&lp->blink_timer);
/* Restore the original value of the bcrs */
spin_lock_irqsave(&lp->lock, flags);
for (i = 4; i < 8; i++) {
a->write_bcr(ioaddr, i, regs[i - 4]);
}
spin_unlock_irqrestore(&lp->lock, flags);
return 0;
}
/*
* lp->lock must be held.
*/
static int pcnet32_suspend(struct net_device *dev, unsigned long *flags,
int can_sleep)
{
int csr5;
struct pcnet32_private *lp = netdev_priv(dev);
struct pcnet32_access *a = &lp->a;
ulong ioaddr = dev->base_addr;
int ticks;
/* really old chips have to be stopped. */
if (lp->chip_version < PCNET32_79C970A)
return 0;
/* set SUSPEND (SPND) - CSR5 bit 0 */
csr5 = a->read_csr(ioaddr, CSR5);
a->write_csr(ioaddr, CSR5, csr5 | CSR5_SUSPEND);
/* poll waiting for bit to be set */
ticks = 0;
while (!(a->read_csr(ioaddr, CSR5) & CSR5_SUSPEND)) {
spin_unlock_irqrestore(&lp->lock, *flags);
if (can_sleep)
msleep(1);
else
mdelay(1);
spin_lock_irqsave(&lp->lock, *flags);
ticks++;
if (ticks > 200) {
if (netif_msg_hw(lp))
printk(KERN_DEBUG
"%s: Error getting into suspend!\n",
dev->name);
return 0;
}
}
return 1;
}
/*
* process one receive descriptor entry
*/
////处理收到的一个descriptor entry,然后交给网络层
static void pcnet32_rx_entry(struct net_device *dev,
struct pcnet32_private *lp,
struct pcnet32_rx_head *rxp,
int entry)
{
int status = (short)le16_to_cpu(rxp->status) >> 8; //rxp = &lp->rx_ring[entry]
int rx_in_place = 0;
struct sk_buff *skb;
short pkt_len;
//D//他的意思应该是收到的数据包都应该视为独立的frame,不存在buffer chain,如果出现了,说明出错了
//这里0x03表示STP位被置,即Start of Packet, ENP被置,即End of Packet
if (status != 0x03) { /* There was an error. */ //
/*
* There is a tricky error noted by John Murphy,
* to Russ Nelson: Even with full-sized
* buffers it's possible for a jabber packet to use two
* buffers, with only the last correctly noting the error.
*/
// 下面的错误种类和位的对应关系让人有点迷茫,暂时不管
if (status & 0x01) /* Only count a general error at the */
dev->stats.rx_errors++; /* end of a packet. */
if (status & 0x20) //DM//Start of Packet
dev->stats.rx_frame_errors++;
if (status & 0x10)
dev->stats.rx_over_errors++;
if (status & 0x08)
dev->stats.rx_crc_errors++;
if (status & 0x04)
dev->stats.rx_fifo_errors++;
return;
}
///prob/ 不太明白这里为何要将数据长度减去4
pkt_len = (le32_to_cpu(rxp->msg_length) & 0xfff) - 4;
//DM// 帧长大约PKT_BUF_SIZE+4或者小于64字节的包都会被丢掉
/* Discard oversize frames. */
if (unlikely(pkt_len > PKT_BUF_SIZE)) {
if (netif_msg_drv(lp))
printk(KERN_ERR "%s: Impossible packet size %d!\n",
dev->name, pkt_len);
dev->stats.rx_errors++;
return;
}
if (pkt_len < 60) {
if (netif_msg_rx_err(lp))
printk(KERN_ERR "%s: Runt packet!\n", dev->name);
dev->stats.rx_errors++;
return;
}
/*
*rx_copybreak默认值是200,insmod可传参数指定,推测意思应该是超过rx_copybreak
*大小的frame,就进行切断处理
*下面的if-else的功能:
*如果pkt_len大于copybreak,则取消当前处理的sk_buff的dma映射,并将原来的 lp->
*rx_skbuff[entry]指针指向一个新分配的 sk_buff(并使之对其,建立DMA映射),然后
*处理原来的sk_buff,并交给网络层,如果不大于,则直接将其数据区拷贝到新的sk_buff,
*处理后递交给网路层
*/
if (pkt_len > rx_copybreak)
{
struct sk_buff *newskb;
//// dev_alloc_skb -- allocate an skbuff for sending
if ((newskb = dev_alloc_skb(PKT_BUF_SKB)))
{
/**DM
* Increase the headroom of an empty &sk_buff by reducing the tail
* room. This is only allowed for an empty buffer.
* sk_buff刚分配时只有tail room ,reserve后 前面的NET_IP_ALIGN字节变为
* head room。 是因为共有三个区(两者中间的是packet data),
* 四个指针来分界
*/
skb_reserve(newskb, NET_IP_ALIGN); ////使以太帧头部四字节对其
skb = lp->rx_skbuff[entry];
pci_unmap_single(lp->pci_dev,
lp->rx_dma_addr[entry],
PKT_BUF_SIZE,
PCI_DMA_FROMDEVICE);
///prob/ 使数据区向尾部扩张pkt_len个字节,不太明白为何要这样做
skb_put(skb, pkt_len);
lp->rx_skbuff[entry] = newskb;
lp->rx_dma_addr[entry] =
pci_map_single(lp->pci_dev,
newskb->data,
PKT_BUF_SIZE,
PCI_DMA_FROMDEVICE);
rxp->base = cpu_to_le32(lp->rx_dma_addr[entry]);
rx_in_place = 1;
}
else
skb = NULL;
}
else
{
skb = dev_alloc_skb(pkt_len + NET_IP_ALIGN);
}
if (skb == NULL) {
if (netif_msg_drv(lp))
printk(KERN_ERR
"%s: Memory squeeze, dropping packet.\n",
dev->name);
dev->stats.rx_dropped++;
return;
}
skb->dev = dev;
if (!rx_in_place) {
skb_reserve(skb, NET_IP_ALIGN);
skb_put(skb, pkt_len); /* Make room */
/*从设备到RAM的一次DMA数据传送完成之前设备驱动程序是不可以访问内存缓冲区的:
*相反,如果有必要,在读缓冲区之前,驱动程序应该调用pci_dma_sync_single_for_
*cpu()或dma_sync_single_for_cpu()使相应的硬件高速缓存行无效。在80x86体系结
*构中,上述函数几乎不做任何事情,因为硬件高速缓存和DMA之间的一致性是由硬件来
*维护的。
*可以认为下面这句话就是为了维护一致性,
*/
pci_dma_sync_single_for_cpu(lp->pci_dev,
lp->rx_dma_addr[entry],
pkt_len,
PCI_DMA_FROMDEVICE);
///skb_copy_to_linear_data下面函数的实现体只有一句话memcpy(skb->data, from, len);
skb_copy_to_linear_data(skb,
(unsigned char *)(lp->rx_skbuff[entry]->data),
pkt_len);
pci_dma_sync_single_for_device(lp->pci_dev,
lp->rx_dma_addr[entry],
pkt_len,
PCI_DMA_FROMDEVICE);
}
dev->stats.rx_bytes += skb->len;
/*
*(1)将skb->dev指向接收设备
*(2)将skb->mac_header指向data(此时data就是指向mac起始地址)
*(3)调用skb_pull(skb, ETH_HLEN)将skb->data后移14字节指向ip首部
*(4)通过比较目的mac地址判断包的类型,并将skb->pkt_type赋值PACKET_BROADCAST
*或PACKET_MULTICAST或者PACKET_OTHERHOST ,因为PACKET_HOST为0,所以是默认值,
*HOST表示包的目的地址是本机
*(5)最后判断协议类型,并返回(大部分情况下直接返回eth首部的protocol字段的值),
*这个返回值被存在skb->protocol字段中
*/
skb->protocol = eth_type_trans(skb, dev);
#ifdef CONFIG_PCNET32_NAPI
/*
*netif_receive_skb() is the main receive data processing
*function,把数据包交给上层协议,任务完成
*/
netif_receive_skb(skb);
#else
netif_rx(skb);
#endif
dev->last_rx = jiffies;
dev->stats.rx_packets++;
return;
}
/*
* 完成最多budge个包的接收,然后返回总共接收的包的数量,接收的包均会立刻交给网络层
*/
static int pcnet32_rx(struct net_device *dev, int budget)
{
struct pcnet32_private *lp = netdev_priv(dev);
//cur_rx, cur_tx是The next free ring entry,rx_mod_mask是rx ring modular mask,取余操作
int entry = lp->cur_rx & lp->rx_mod_mask;
struct pcnet32_rx_head *rxp = &lp->rx_ring[entry];
int npackets = 0; //DM//记录已经处理的packet的数量
/*由于此时网卡已经将收到的包塞入缓冲区,所以网卡要将own位清0,而own位是status的最
*高位 ,所以,此时status的值将>0。
*如果OWN位为1(此时status<0),那么表示网卡还没有放数据,此时根据手册,就不能再
* 继续读下一个entry了。
*/
/* If we own the next entry, it's a new packet. Send it up. */
while (npackets < budget && (short)le16_to_cpu(rxp->status) >= 0) {
///处理当前的descriptor entry,并将数据递交给网络层
pcnet32_rx_entry(dev, lp, rxp, entry);
npackets += 1;
/*
* The docs say that the buffer length isn't touched, but Andrew
* Boyd of QNX reports that some revs of the 79C965 clear it.
*/
/*
* prob/这里不太明白为何长度是个常数 1522 ,可能是因为rx descriptor的
* skb_buff的长度一直都是分配最大值PKT_BUF_SKB 1544,不过1544是错误的,
* 因为最大不能超过1518
*/
rxp->buf_length = cpu_to_le16(NEG_BUF_SIZE);
//写内存屏障
wmb();
/* Make sure owner changes after others are visible */
rxp->status = cpu_to_le16(0x8000); //DM//把rxp的控制权还给controller
///处理下一个descriptor
entry = (++lp->cur_rx) & lp->rx_mod_mask;
rxp = &lp->rx_ring[entry];
}
return npackets;
}
/***
* 1.释放已经发送的数据包的缓冲区
* 2.检查错误,进行错误处理,如果发生overflow错误,则返回重置网卡信息(must_start=1)
* 3.如果tx已经不是满的(也可能是空余的descriptor多余某个数值,后面的逻辑还不是很清晰)
* 则置lp->tx_full=0,并通知网络子系统可以重洗启动数据包的发送了
*/
static int pcnet32_tx(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned int dirty_tx = lp->dirty_tx;
int delta;
int must_restart = 0;
/*
*检查错误,如果出现overflow错误,直接返回must_restart,反之释放已经tx_ring中已
*经完成发送的descriptor的缓冲区
*/
while (dirty_tx != lp->cur_tx) {
int entry = dirty_tx & lp->tx_mod_mask;
int status = (short)le16_to_cpu(lp->tx_ring[entry].status);
if (status < 0)
break; /* It still hasn't been Txed */
lp->tx_ring[entry].base = 0;
///ERR位为1,所以出现了错误,检查错误,该累加累加,该打印错误打印错误
if (status & 0x4000) {
/* There was a major error, log it. */
////prob/misc每一位具体干嘛的还不清楚,确定是 标识错误的
int err_status = le32_to_cpu(lp->tx_ring[entry].misc);
dev->stats.tx_errors++;
if (netif_msg_tx_err(lp))
printk(KERN_ERR
"%s: Tx error status=%04x err_status=%08x\n",
dev->name, status,
err_status);
if (err_status & 0x04000000)
dev->stats.tx_aborted_errors++;
if (err_status & 0x08000000)
dev->stats.tx_carrier_errors++;
if (err_status & 0x10000000)
dev->stats.tx_window_errors++;
///prob/ dxsuflo=0,算not define吗
#ifndef DO_DXSUFLO
if (err_status & 0x40000000) {
dev->stats.tx_fifo_errors++;
/* Ackk! On FIFO errors the Tx unit is turned off! */
/* Remove this verbosity later! */
if (netif_msg_tx_err(lp))
printk(KERN_ERR
"%s: Tx FIFO error!\n",
dev->name);
must_restart = 1;
}
#else
if (err_status & 0x40000000) {
dev->stats.tx_fifo_errors++;
if (!lp->dxsuflo) { /* If controller doesn't recover ... */
/* Ackk! On FIFO errors the Tx unit is turned off! */
/* Remove this verbosity later! */
if (netif_msg_tx_err(lp))
printk(KERN_ERR
"%s: Tx FIFO error!\n",
dev->name);
must_restart = 1;
}
}
#endif
} else {
///overflow error or CRC error
if (status & 0x1800)
dev->stats.collisions++;
dev->stats.tx_packets++;
}
/* We must free the original skb */
///释放sk_buff缓冲区(该sk_buff已经发送过了),取消DMA映射
if (lp->tx_skbuff[entry]) {
pci_unmap_single(lp->pci_dev,
lp->tx_dma_addr[entry],
lp->tx_skbuff[entry]->
len, PCI_DMA_TODEVICE);
dev_kfree_skb_any(lp->tx_skbuff[entry]);
lp->tx_skbuff[entry] = NULL;
lp->tx_dma_addr[entry] = 0;
}
dirty_tx++;
}
///prob/下面的判断逻辑看不懂
delta = (lp->cur_tx - dirty_tx) & (lp->tx_mod_mask + lp->tx_ring_size);
if (delta > lp->tx_ring_size) {
if (netif_msg_drv(lp))
printk(KERN_ERR
"%s: out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
dev->name, dirty_tx, lp->cur_tx,
lp->tx_full);
dirty_tx += lp->tx_ring_size;
delta -= lp->tx_ring_size;
}
///prob/判断如果full不在成立(判断逻辑不明白),则重新置为未满
if (lp->tx_full &&
netif_queue_stopped(dev) &&
delta < lp->tx_ring_size - 2) {
/* The ring is no longer full, clear tbusy. */
lp->tx_full = 0;
netif_wake_queue(dev);
}
lp->dirty_tx = dirty_tx;
return must_restart;
}
////函数体中只有开中断,而没有关中断,所以推测NAPI调用poll之前会自动关闭中断
////完成最多budget个包的接收处理后,返回接收的包的数量
#ifdef CONFIG_PCNET32_NAPI
static int pcnet32_poll(struct napi_struct *napi, int budget)
{
/**DM
* container_of - cast a member of a structure out to the containing structure
* @ptr: the pointer to the member.
* @type: the type of the container struct this is embedded in.
* @member: the name of the member within the struct.
*
*/
//DM// 获取lp地址
struct pcnet32_private *lp = container_of(napi, struct pcnet32_private, napi);
struct net_device *dev = lp->dev;
unsigned long ioaddr = dev->base_addr;
unsigned long flags;
int work_done; //DM// 完成的工作
u16 val;
/// 接收最多budge个数据包,并递交给网络层,然后返回总共接收的包的数量
work_done = pcnet32_rx(dev, budget);
spin_lock_irqsave(&lp->lock, flags);
//DM//下面像是在做出错处理啊。。。pcnet32_tx还是不知道,判断是否错误是否需要导致重启contorller
if (pcnet32_tx(dev)) {
/* reset the chip to clear the error condition, then restart */
lp->a.reset(ioaddr);
/**DM
* 下面不应该有09
* CSR4: Test and Features Control
*/
lp->a.write_csr(ioaddr, CSR4, 0x0915); /* auto tx pad */
pcnet32_restart(dev, CSR0_START);
netif_wake_queue(dev);
}
spin_unlock_irqrestore(&lp->lock, flags);
//DM// 开中断,关掉中断屏蔽
if (work_done < budget) {
spin_lock_irqsave(&lp->lock, flags);
/*
* 实现只有一句话__napi_complete(napi); 功能:Mark NAPI processing as
* complete.,推测就是通知NAPI我搞定了
*/
__netif_rx_complete(dev, napi);
/* clear interrupt masks */ //DM// 把CSR3山的中断屏蔽都关掉
val = lp->a.read_csr(ioaddr, CSR3);
val &= 0x00ff;
lp->a.write_csr(ioaddr, CSR3, val);
/* Set interrupt enable. */
lp->a.write_csr(ioaddr, CSR0, CSR0_INTEN);
///也是内存写屏障,不过好像是和PCI的特性有点关系
mmiowb();
spin_unlock_irqrestore(&lp->lock, flags);
}
return work_done;
}
#endif
#define PCNET32_REGS_PER_PHY 32
#define PCNET32_MAX_PHYS 32
static int pcnet32_get_regs_len(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
int j = lp->phycount * PCNET32_REGS_PER_PHY;
return ((PCNET32_NUM_REGS + j) * sizeof(u16));
}
static void pcnet32_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *ptr)
{
int i, csr0;
u16 *buff = ptr;
struct pcnet32_private *lp = netdev_priv(dev);
struct pcnet32_access *a = &lp->a;
ulong ioaddr = dev->base_addr;
unsigned long flags;
spin_lock_irqsave(&lp->lock, flags);
csr0 = a->read_csr(ioaddr, CSR0);
if (!(csr0 & CSR0_STOP)) /* If not stopped */
pcnet32_suspend(dev, &flags, 1);
/* read address PROM */
for (i = 0; i < 16; i += 2)
*buff++ = inw(ioaddr + i);
/* read control and status registers */
for (i = 0; i < 90; i++) {
*buff++ = a->read_csr(ioaddr, i);
}
*buff++ = a->read_csr(ioaddr, 112);
*buff++ = a->read_csr(ioaddr, 114);
/* read bus configuration registers */
for (i = 0; i < 30; i++) {
*buff++ = a->read_bcr(ioaddr, i);
}
*buff++ = 0; /* skip bcr30 so as not to hang 79C976 */
for (i = 31; i < 36; i++) {
*buff++ = a->read_bcr(ioaddr, i);
}
/* read mii phy registers */
if (lp->mii) {
int j;
for (j = 0; j < PCNET32_MAX_PHYS; j++) {
if (lp->phymask & (1 << j)) {
for (i = 0; i < PCNET32_REGS_PER_PHY; i++) {
lp->a.write_bcr(ioaddr, 33,
(j << 5) | i);
*buff++ = lp->a.read_bcr(ioaddr, 34);
}
}
}
}
if (!(csr0 & CSR0_STOP)) { /* If not stopped */
int csr5;
/* clear SUSPEND (SPND) - CSR5 bit 0 */
csr5 = a->read_csr(ioaddr, CSR5);
a->write_csr(ioaddr, CSR5, csr5 & (~CSR5_SUSPEND));
}
spin_unlock_irqrestore(&lp->lock, flags);
}
static const struct ethtool_ops pcnet32_ethtool_ops = {
.get_settings = pcnet32_get_settings,
.set_settings = pcnet32_set_settings,
.get_drvinfo = pcnet32_get_drvinfo,
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
if (lp->pci_dev)
strcpy(info->bus_info, pci_name(lp->pci_dev));
.get_msglevel = pcnet32_get_msglevel,
.set_msglevel = pcnet32_set_multicast_listsglevel,
.nway_reset = pcnet32_nway_reset,
.get_link = pcnet32_get_link,
.get_ringparam = pcnet32_get_ringparam,
.set_ringparam = pcnet32_set_ringparam,
.get_strings = pcnet32_get_strings,
.self_test = pcnet32_ethtool_test,
.phys_id = pcnet32_phys_id,
.get_regs_len = pcnet32_get_regs_len,
.get_regs = pcnet32_get_regs,
.get_sset_count = pcnet32_get_sset_count,
};
/* only probes for non-PCI devices, the rest are handled by
* pci_register_driver via pcnet32_probe_pci */
static void __devinit pcnet32_probe_vlbus(unsigned int *pcnet32_portlist)
{
unsigned int *port, ioaddr;
/* search for PCnet32 VLB cards at known addresses */
for (port = pcnet32_portlist; (ioaddr = *port); port++) {
if (request_region
(ioaddr, PCNET32_TOTAL_SIZE, "pcnet32_probe_vlbus")) {
/* check if there is really a pcnet chip on that ioaddr */
if ((inb(ioaddr + 14) == 0x57)
&& (inb(ioaddr + 15) == 0x57)) {
pcnet32_probe1(ioaddr, 0, NULL);
} else {
release_region(ioaddr, PCNET32_TOTAL_SIZE);
}
}
}
}
///PCI设备启动时,BIOS会自动识别PCI设备,并分配相关资源,pdev是对设备资源的抽象
static int __devinit
pcnet32_probe_pci(struct pci_dev *pdev, const struct pci_device_id *ent)
/*
* each function can be identified at hardware level by a 16-bit address
* the structure pci_dev was used to represent it,so we don't need to act on
* the address
*/
{
unsigned long ioaddr;
int err;
/*
This function actually enables the device.
It wakes up the device and in some cases also assigns its interrupt line and I/O regions.
*/
err = pci_enable_device(pdev);
if (err < 0) {
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_ERR PFX
"failed to enable device -- err=%d\n", err);
return err;
}
///为设备pdev启用总线控制,即使得设备具备申请PCI总线控制权的能力( 感觉应该是权限)
pci_set_master(pdev);
/*
* PCI配置空间中的6个基地址寄存器,每个都为32位,它们代表PCI的6个IO区域。在linux内核中,
* PCI设备的IO区域已被集成到通用资源管理,所以要想获得PCI设备的基地址在存储器域的物理地址,
* 要通过下面的函数:
* unsigned long pci_resource_start(struct pci_dev *pdev, int bar);
* 该函数返回6个PCI IO区域中的第bar个的基地址值(存储器域的物理地址)。bar代表基地址
* 寄存器(base address register),取值为0到5.
* 所以下面的返回第一个基地址寄存器的值
*/
ioaddr = pci_resource_start(pdev, 0);
if (!ioaddr) {
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_ERR PFX
"card has no PCI IO resources, aborting\n");
return -ENODEV;
}
if (!pci_dma_supported(pdev, PCNET32_DMA_MASK)) {
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_ERR PFX
"architecture does not support 32bit PCI busmaster DMA\n");
return -ENODEV;
}
/*
*这个函数告诉内核, 你要使用 PCNET32_TOTAL_SIZE 个端口, 从 ioaddr 开始. name
*参数应当是你的设备的名子.如果分配成功返回值是非 NULL.
*如果你从 request_region 得到 NULL, 你将无法使用需要的端口
*/
if (request_region(ioaddr, PCNET32_TOTAL_SIZE, "pcnet32_probe_pci") ==
NULL) {
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_ERR PFX
"io address range already allocated\n");
return -EBUSY;
}
/// 调用pcnet32_probe1()
err = pcnet32_probe1(ioaddr, 1, pdev);
if (err < 0) {
pci_disable_device(pdev);
}
return err;
}
/* pcnet32_probe1
* Called from both pcnet32_probe_vlbus and pcnet_probe_pci.
* pdev will be NULL when called from pcnet32_probe_vlbus.
*/
/*
* 1.获取设别IO基地址,确定IO接口的位数,并赋对应的操作函数结构体
* 2.识别芯片版本,设置芯片相关的参数等,比如是否支持full duplex、mii等
* 3.给发现的设备分配一个net_device 结构体,并读取硬件中的信息,填充net_device,如 MAC
* 4.获取私有数据块地址lp,填充lp的结构,包括分配initialization block、填写irq、mes_enable等
* 5.设置napi,并注册poll函数
* 6.给net_device分配发送和接收ring
* 7.填充initalization block,但是如果pdev非0的话,本函数并不会触发init block写入网卡就寄存器
* 8.初始化watchdog,并注册watchdog函数
* 9.注册其他操作函数
* 10.注册该net_device结构,注意:前面的注册本质只是填充net_device结构体,并非真正的注册
* 11.相关出错处理
*/
static int __devinit
pcnet32_probe1(unsigned long ioaddr, int shared, struct pci_dev *pdev)
{
struct pcnet32_private *lp;
int i, media;
int fdx, mii, fset, dxsuflo;
int chip_version; ///版本号
char *chipname; ///芯片名称
struct net_device *dev;
struct pcnet32_access *a = NULL;
u8 promaddr[6];
int ret = -ENODEV;
/*79c970A默认的IO mode是16bit 所以这里reset要使用16bit mode的读操作方式*/
///Reset causes the device to cease operation and clear its internal logic.
pcnet32_wio_reset(ioaddr);
/***
*通过往RDP(both 16bit and 32bit are at offset 0x10)中进行写操作来转换成32bit
*IO mode指的是contoller的IO寄存器的映射方式
*/
/* NOTE: 16-bit check is first, otherwise some older PCnet chips fail */
/*
pcnet32_wio_read_csr(ioaddr, 0):读取CSR0的数据,判断是否为4,此时STOP位是置1的,
表示此时网卡的状态是inactive(因为pcnet32_wio_reset(ioaddr);已经重置过网卡,网卡此时应为inactive状态
///pcnet32_wio_check(ioaddr):向RAP中写88,再从RAP中读取数据,判断是否是88
///上面两个操作都是使用16bit的模式(即使用16bit的操作函数集)任意一个条件不满足,
都说明网卡不是16位的或者网卡当前的状态不是期望的状态,如果条件都满足,说明是16位的
网卡,则将16位的访问函数集赋给变量a(struct pcnet32_access类型)
///这是因为,由于16位和32位的RAP偏移量是不一样的,所以在32位的am79c970A上执行16位的访问函数,结果必然错误
///如果上述两个操作不全为真,则再尝试以32位模式执行同样的操作,如果结果仍为假,说明网卡状态异常,进入错误处理
///经测试,在vmware workstation 7平台上fedora9-32bit上,芯片型号是AM79c970A,
默认为16bit mode, pcnet32_wio_reset(ioaddr); 之后往RDP写入任意数据,可以转换至32mode
*/
if (pcnet32_wio_read_csr(ioaddr, 0) == 4 && pcnet32_wio_check(ioaddr)) {
a = &pcnet32_wio;
} else {
pcnet32_dwio_reset(ioaddr);
if (pcnet32_dwio_read_csr(ioaddr, 0) == 4
&& pcnet32_dwio_check(ioaddr)) {
a = &pcnet32_dwio;
} else
goto err_release_region;
}
/// read_csr先向RAP中写入(inw) 0,然后读取RDP的值,返回,
/// later: the valu e writed into RAP if the CSR number, and the value of the CSR will be
/// put into the RDP, so read the RDP after write into the RAP
/// read the chip's version number from CSR88 and CSR89
chip_version =
a->read_csr(ioaddr, 88) | (a->read_csr(ioaddr, 89) << 16);
///经测试芯片型号是am79c970A,其version number is (0x0242 1003 | 0x0262H << 16) = 0x0262 1003
if ((pcnet32_debug & NETIF_MSG_PROBE) && (pcnet32_debug & NETIF_MSG_HW))
printk(KERN_INFO " PCnet chip version is %#x.\n",
chip_version);
/// the last 12 bits of the version number should all be 0x003, I think
/// chipversion = 0262 1003H
if ((chip_version & 0xfff) != 0x003) {
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_INFO PFX "Unsupported chip version.\n");
goto err_release_region;
}
/* initialize variables */
/**
* fdx表示full duplex 全双工,为1支持全双工,为0表示不能支持全双工
* ??????? mii 表示是否支持mii,mii干啥的,
* ??????? fset
* ??????? dxsuflo未知
*/
fdx = mii = fset = dxsuflo = 0;
/// get the 2 bytes befor 0x003;
chip_version = (chip_version >> 12) & 0xffff;
/// VMware提供的网卡是79c97cA,chip_version = 2621H
switch (chip_version) {
case 0x2420:
//// because the chip supplied by vmware is 70c970, so I will concentrate on this case
chipname = "PCnet/PCI 79C970"; /* PCI */
break;
case 0x2430:
if (shared)
chipname = "PCnet/PCI 79C970"; /* 970 gives the wrong chip id back */
else
chipname = "PCnet/32 79C965"; /* 486/VL bus */
break;
case 0x2621:
chipname = "PCnet/PCI II 79C970A"; /* PCI */
fdx = 1;
break;
case 0x2623:
chipname = "PCnet/FAST 79C971"; /* PCI */
fdx = 1;
mii = 1;
fset = 1;
break;
case 0x2624:
chipname = "PCnet/FAST+ 79C972"; /* PCI */
fdx = 1;
mii = 1;
fset = 1;
break;
case 0x2625:
chipname = "PCnet/FAST III 79C973"; /* PCI */
fdx = 1;
mii = 1;
break;
case 0x2626:
/// well,the 79c978 chip looks like it's a little special, I don't have the hardware manual of it ,and just ignore it
chipname = "PCnet/Home 79C978"; /* PCI */
fdx = 1;
/*
* This is based on specs published at www.amd.com. This section
* assumes that a card with a 79C978 wants to go into standard
* ethernet mode. The 79C978 can also go into 1Mb HomePNA mode,
* and the module option homepna=1 can select this instead.
*/
media = a->read_bcr(ioaddr, 49);
media &= ~3; /* default to 10Mb ethernet */
if (cards_found < MAX_UNITS && homepna[cards_found])
media |= 1; /* switch to home wiring mode */
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_DEBUG PFX "media set to %sMbit mode.\n",
(media & 1) ? "1" : "10");
a->write_bcr(ioaddr, 49, media);
break;
case 0x2627:
chipname = "PCnet/FAST III 79C975"; /* PCI */
fdx = 1;
mii = 1;
break;
case 0x2628:
chipname = "PCnet/PRO 79C976";
fdx = 1;
mii = 1;
break;
default:
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_INFO PFX
"PCnet version %#x, no PCnet32 chip.\n",
chip_version);
goto err_release_region;
}
/*
* On selected chips turn on the BCR18:NOUFLO bit. This stops transmit
* starting until the packet is loaded. Strike one for reliability, lose
* one for latency - although on PCI this isnt a big loss. Ohlder chips
* have FIFO's smaller tan a packet, so you can't do this.
* Turn on BCR18:BurstRdEn and BCR18:BurstWrEn.
*/
//// case 79c970 ,fset == 0, false, so was ingored by me
if (fset) {
a->write_bcr(ioaddr, 18, (a->read_bcr(ioaddr, 18) | 0x0860));//打开BCR18的第11位,即NOUFLO位,以及第6位(BREADE)和第5位(BWRITE)
a->write_csr(ioaddr, 80,
(a->read_csr(ioaddr, 80) & 0x0C00) | 0x0c00);
dxsuflo = 1;
}
/*
* struct net_device *dev;
* 分配一个net_device结构,并分配一个大小为struct
* pcnte32_private的size的内存空间即(sizeof(*lp)),并将net_device
* 中的priv指向这个大小为sizeof(struct pcnet32_private)的内存空间的的首地址
*/
dev = alloc_etherdev(sizeof(*lp));
/// exception handling
if (!dev) {
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_ERR PFX "Memory allocation failed.\n");
ret = -ENOMEM;
goto err_release_region;
}
/* 把dev->dev.parent设置为pdev->dev。dev->dev 和pdev->dev都是struct
* device结构, struct device结构是devcie model中使用的设备节点结构,这句话是为
* 了表明net_device对pci_device的继承关系,而pci_device将struct device作为成员
* (隐式地表明pci_device是 struct devcie的子类),则是为了将pci_device挂到
* device model设备树的节点上
*/
SET_NETDEV_DEV(dev, &pdev->dev);
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_INFO PFX "%s at %#3lx,", chipname, ioaddr);
/* In most chips, after a chip reset, the ethernet address is read from the
* station address PROM at the base address and programmed into the
* "Physical Address Registers" CSR12-14.
* As a precautionary measure, we read the PROM values and complain if
* they disagree with the CSRs. If they miscompare, and the PROM addr
* is valid, then the PROM addr is used.
*/
/*填充dev中的MAC地址。MAC地址存放于CSR12(对应MAC[15:0]),CSR13(MAC[31:16])
* ,CSR14(MAC[47:32]),每个CSR均使用低16位
* CSR3 bit2可设置网卡使用大端模式或者小端模式,CSR3 bit2为0是为小端,为1时为大端,
* 默认值是0,即默认为小端,因为此时网卡已经重置,所以此时网卡使用的是小端,当前CPU
* 为x86架构,也为小端,所以不存在大小端转换问题
*/
for (i = 0; i < 3; i++) {
unsigned int val;
val = a->read_csr(ioaddr, i + 12) & 0x0ffff;
/* There may be endianness issues here. */
dev->dev_addr[2 * i] = val & 0x0ff;
dev->dev_addr[2 * i + 1] = (val >> 8) & 0x0ff;
}
/* read PROM address and compare with CSR address */
/*
*读取AM79C970的IO resourece(起始地址为ioaddr,参见PCnet Family Software Design
* Considerations)的byte0到 byte5中存放的48-bit ethernet address,放入promaddr中
*/
for (i = 0; i < 6; i++)
promaddr[i] = inb(ioaddr + i);
/*
*对从PROM中读取的MAC地址(存放于promaddr)和从CSR12~CSR14中读取的MAC地址(存放于dev->dev_addr)
* 进行比较,如果两个值不相等或者dev_addr不是一个有效的MAC地址,则把prom的值拷给dev->dev_addr;
/*
*为什么要比较,因为网卡可能重新打开,那么可能CSR12~CSR14里面的值是之前已经改动过
*的MAC地址,非原始MAC地址,所以要把他回复成原始的MAC地址
*/
if (memcmp(promaddr, dev->dev_addr, 6)
|| !is_valid_ether_addr(dev->dev_addr)) {
if (is_valid_ether_addr(promaddr)) {
if (pcnet32_debug & NETIF_MSG_PROBE) {
printk(" warning: CSR address invalid,\n");
printk(KERN_INFO
" using instead PROM address of");
}
memcpy(dev->dev_addr, promaddr, 6);
}
}
/////?????网卡MAM地址在哪改,是否通过ioctl()来改
/// perm_addr 指的是 Permanent hardware address (即 MAC) netdevice.h中可以找到
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
///??????为什么MAC地址要置0000
/* if the ethernet address is not valid, force to 00:00:00:00:00:00 */
if (!is_valid_ether_addr(dev->perm_addr))
memset(dev->dev_addr, 0, sizeof(dev->dev_addr));
if (pcnet32_debug & NETIF_MSG_PROBE) {
/// It's a macro which define char mac[MAC_BUF_SIZE] MAC_BUF_SIZE = 18
DECLARE_MAC_BUF(mac);
printk(" %s", print_mac(mac, dev->dev_addr));
/* Version 0x2623 and 0x2624 */
/// 79C70A was 0x2621 so ignored,下面没做什么实际工作,就是读取某些寄存器然后输出内容
if (((chip_version + 1) & 0xfffe) == 0x2624) {
i = a->read_csr(ioaddr, 80) & 0x0C00; /* Check tx_start_pt */
printk("\n" KERN_INFO " tx_start_pt(0x%04x):", i);
switch (i >> 10) {
case 0:
printk(" 20 bytes,");
break;
case 1:
printk(" 64 bytes,");
break;
case 2:
printk(" 128 bytes,");
break;
case 3:
printk("~220 bytes,");
break;
}
i = a->read_bcr(ioaddr, 18); /* Check Burst/Bus control */
printk(" BCR18(%x):", i & 0xffff);
if (i & (1 << 5))
printk("BurstWrEn ");
if (i & (1 << 6))
printk("BurstRdEn ");
if (i & (1 << 7))
printk("DWordIO ");
if (i & (1 << 11))
printk("NoUFlow ");
i = a->read_bcr(ioaddr, 25);//BCR25是SRAM的大小
printk("\n" KERN_INFO " SRAMSIZE=0x%04x,", i << 8);
i = a->read_bcr(ioaddr, 26);//BCR26: SRAM Boundary Register
printk(" SRAM_BND=0x%04x,", i << 8);
i = a->read_bcr(ioaddr, 27);//BCR27: SRAM Interface Control Register
if (i & (1 << 14))
printk("LowLatRx");
}
}
dev->base_addr = ioaddr;
///返回net_device *dev 的私有数据地址
lp = netdev_priv(dev);
/* pci_alloc_consistent returns page-aligned memory, so we do not have to check the alignment */
/////????????一致映射和流式映射的区别
if ((lp->init_block =
pci_alloc_consistent(pdev, sizeof(*lp->init_block), &lp->init_dma_addr)) == NULL) {//分配initialization block
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_ERR PFX
"Consistent memory allocation failed.\n");
ret = -ENOMEM;
goto err_free_netdev;
}
lp->pci_dev = pdev;
lp->dev = dev;
spin_lock_init(&lp->lock);
SET_NETDEV_DEV(dev, &pdev->dev); 这句话和上面的重复了,删掉
lp->name = chipname;
/*
* lp->shared_irq表示是否共享中断号,注册中断服务程序时,lp->shrared_irq
* 如果为flags置为IRQ_SHARED,表示共 享中断号,为0则flag置0,表示不共享中断号,共享中
* 断号的意思是多个ISR可以注册到同一个IRQ上,这些ISR会被中断子系统以链表的形式连接在
* 一起,每一个IRQ都对应这样一个链表,当设备向CPU发出中断请求时,中断子系统会根据IRQ
* 遍历对应的链表,链表上的每一个ISR都会被调用一次,(中断子系统给ISR传递两个参数,第
* 一个是IRQ,即链表对应的IRQ,第二个是void *dev_id,是可以用 来唯一标示设备的指针,
* 这个指针是在注册ISR时传递给中断子系统的,一般都是使用设备对应的结构体的指针。)ISR
* 应该先检测自己的硬件有没有产生中断(一般是检测硬件的寄存器的标志位),如果没有则退
* 出中断服务程序,此时中断子系统会自动调用链表中的下一个ISR,如果硬件发生中断则开始进
* 行中断处理,中断处理完成后ISR返回,中断子系统继续调用链表中下一个ISR
*/
/*
* 设备向CPU发出中断时,如果CPU此时为开中断,则CPU会立即响应,会立即给中断控制器发
* 一个ack消息,中断控制器会将中断号放在数据线上供CPU读取,CPU读取后,会根据中断号找
* 到该中断号的中断向量,并且调用该中断向量,注意,当CPU调用中断向量之前,处于关中断状
* 态。然后CPU必须在合适的时机(时机一般是调用设备的ISR之前,这是为了提高并发性,即尽
* 快让出CPU的中断管脚资源,让其他中断请求可以被受理)向中断控制器发出EOI(end of
* interrupt)消息,表示该中断请求已经受理,即告诉中断 控制器不必再发出该中断请求。
*/
lp->shared_irq = shared;
/////lp->tx_ring_size 表示发送ring的大小(即一个ring上有多少个tramsimit descriptor),
/// #define TX_RING_SIZE (1 << (PCNET32_LOG_TX_BUFFERS))
/// default tx ring size *PCNET32_LOG_TX_BUFFERS是存储在init block中 TLEN域的值
lp->tx_ring_size = TX_RING_SIZE;
////和tx_ring_size类似,不同的是rx对应的域是RELN
lp->rx_ring_size = RX_RING_SIZE; /* default rx ring size */
lp->tx_mod_mask = lp->tx_ring_size - 1; ////绕圈时通过tx_mod_mask取余来获得当前在ring中的位置坐标
lp->rx_mod_mask = lp->rx_ring_size - 1;
/*
* 这里的tx_len_bits和rx_len_bits是后面用来填充init block的 tlen_rlen成员的
(tlen_rlen为__le16类型的 变量)。 tlen_rlen成员的bit12~big15用来存放tx_len_bits,
* bit4~bit7用来存放rx_len_bigs,tlen_rlen = lp->tx_len_bits | lp->rx_len_bits,
* 左移是为了把tx_len_bits、rx_len_bits准确地填入tlen_rlen对应位置中
*/
lp->tx_len_bits = (PCNET32_LOG_TX_BUFFERS << 12); ////(4 << 12)
lp->rx_len_bits = (PCNET32_LOG_RX_BUFFERS << 4); (5 << 4)
??????/下面三行弄清楚作用
lp->mii_if.full_duplex = fdx;
lp->mii_if.phy_id_mask = 0x1f;
lp->mii_if.reg_num_mask = 0x1f;
lp->dxsuflo = dxsuflo; /// for 79c970A dxsuflo = 0;
lp->mii = mii; /// for 79c970A mii = 0;
lp->chip_version = chip_version;
lp->msg_enable = pcnet32_debug;
/// if else 都干了同一件事情 就是 lp->options = PCNET32_PORT_ASEL; (值为0x04)
//lp->options用于决定网卡和网线的接口是哪种(AUI,10BAST-T,MII等)
///如果已经发现了至少 MAX_UNITS张卡,或者该卡
/////////?????????
if ((cards_found >= MAX_UNITS)
|| (options[cards_found] > sizeof(options_mapping)))
lp->options = PCNET32_PORT_ASEL;
else
lp->options = options_mapping[options[cards_found]];
lp->mii_if.dev = dev;
/// 由于lp->mii ==0, 所以下面的两个函数没有任何实质性的操作
lp->mii_if.mdio_read = mdio_read;
lp->mii_if.mdio_write = mdio_write;
/* napi.weight is used in both the napi and non-napi cases */
//下面这局多余,往下 7行有解释
///权重越大,一次中断中能够完成的工作就越多,权重指的是该设备所要准备接收的包数量
lp->napi.weight = lp->rx_ring_size / 2;
#ifdef CONFIG_PCNET32_NAPI
//// pcnet32_poll is a function defined ahead
//// 注册poll函数 pcnet32_poll
//将(lp->napi)->poll赋为pcnet32_poll。并把第四个参数赋给napi->weight
netif_napi_add(dev, &lp->napi, pcnet32_poll, lp->rx_ring_size / 2);
#endif
/// 下面这个if语句块也是多余的,因为 !(lp->options & PCNET32_PORT_ASEL) 为假,原因往前看20行
if (fdx && !(lp->options & PCNET32_PORT_ASEL) &&
((cards_found >= MAX_UNITS) || full_duplex[cards_found]))
lp->options |= PCNET32_PORT_FD;
/// 出错处理,如果前面a赋值没有出现问题,不会执行这段
if (!a) {
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_ERR PFX "No access methods\n");
ret = -ENODEV;
goto err_free_consistent;
}
lp->a = *a;
/* prior to register_netdev, dev->name is not yet correct */
if (pcnet32_alloc_ring(dev, pci_name(lp->pci_dev))) {
//这实际上使分配发送和接收ring,其值供设置init_block中的rx_ring和tx_ring使用)
ret = -ENOMEM;
goto err_free_ring;
}
/* detect special T1/E1 WAN card by checking for MAC address */
///推测认为下面的语句也是没有用的
/// 这里感觉是Vmware模拟出错,实际测试 mac前24位是00:0c:29 但是amd实际上是00:00:1A
//// 但是不管是哪种值,下面的if语句都是不成立的,所以下面的语句是多余的
/////??????不知道
if (dev->dev_addr[0] == 0x00 && dev->dev_addr[1] == 0xe0
&& dev->dev_addr[2] == 0x75)
lp->options = PCNET32_PORT_FD | PCNET32_PORT_GPSI;
/*填写initialization block开始*/
///对应MODE 0x0003 设置了 两位 1. loopback enable 2.Disable Transmit
lp->init_block->mode = cpu_to_le16(0x0003); /* Disable Rx and Tx. Mode初始化的是CSR15*/
///对应TLEN 和 RLEN
lp->init_block->tlen_rlen =
cpu_to_le16(lp->tx_len_bits | lp->rx_len_bits);
///对应PADR 48bit
for (i = 0; i < 6; i++)
lp->init_block->phys_addr[i] = dev->dev_addr[i];
///对应LADRF
lp->init_block->filter[0] = 0x00000000;
lp->init_block->filter[1] = 0x00000000;
///对应 RDRA和 TDRA, RDRA 是由传输任务描述符组成的数组(tx_ring)的首地址
lp->init_block->rx_ring = cpu_to_le32(lp->rx_ring_dma_addr); //// rx_ring_dma_addr的值在pcnet32_alloc_ring中被赋值
lp->init_block->tx_ring = cpu_to_le32(lp->tx_ring_dma_addr);
/*填写initialization block结束*/
/* switch pcnet32 to 32bit mode */
///下面的设置同时会导致 SSIZE32 (BCR20, bit 8) 为1,最终导致 csr 2 的低16bit组成(存放)IADR的高16位
a->write_bcr(ioaddr, 20, 2);//BCR20控制从16位到32位的切换,切换的是software style
a->write_csr(ioaddr, 1, (lp->init_dma_addr & 0xffff));//CSR1和CSR2中存放intial_block的起始地址。
a->write_csr(ioaddr, 2, (lp->init_dma_addr >> 16));
/// 获如果pci设备没有提供IRQ,调用 proble_irq_on 获取一个位掩码
/// 关于 probe_irq_on 驱动程序必须保存返回的为掩码,并且将它传递给后面的probe_irq_off函数,
///调用该函数之后(调用probe_irq_on之前),驱动程序要安排设备至少产生一次中断。
////如果总线总线系统是vlbus,则pdev为0
if (pdev) { /* use the IRQ provided by PCI */
///\ 在 Linux 启动时, 计算机的固件已经分配一个唯一的中断号给设备, 并且驱动只需要使用它,就是pdev->irq
dev->irq = pdev->irq;
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(" assigned IRQ %d.\n", dev->irq);
} else
/////
{ ////不知道这里的else有什么意义,如果pdev为假的话,前面获取ioaddr也是错误的,所有操作都没有意义了
////下面这段话是为了靠自己获得一个网卡中断号
unsigned long irq_mask = probe_irq_on();
/*
* To auto-IRQ we enable the initialization-done and DMA error
* interrupts. For ISA boards we get a DMA error, but VLB and PCI
* boards will work.
*/
/* Trigger an initialization just for the interrupt. */
/// previously defined CSR0 = 0
/// #define CSR0_INIT 0x1
/// #define CSR0_INTEN 0x40
/* INIT assertion enables PCnet-PCI controller to begin the initialization
* procedure which reads in the initialization block from memory.
INTEN Interrupt Enable allows INTA to be active if the Interrupt Flag is
set
*/
/// CSR0_INIT enable 从内存中读取initialblock,根据手册中其他地方的意思,就是开始读取
/// CSR0_INTEN 对应IENA位 Interrupt Enable allows INTA to be active if the Interrupt Flag is set.
/// init block 传输完成后,PCnet-PCI controller 会把 CSR0中的 IDON 置为1,这个动作会产生一个中断
a->write_csr(ioaddr, CSR0, CSR0_INTEN | CSR0_INIT);
mdelay(1); ///// 延时一秒(忙等待函数),推断是为了给传输init blcok从而产生中断提供时间
dev->irq = probe_irq_off(irq_mask); /// 该函数返回前面发生的中断的中断号
if (!dev->irq) {
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(", failed to detect IRQ line.\n");
ret = -ENODEV;
goto err_free_ring;
}
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(", probed IRQ %d.\n", dev->irq);
}
/* Set the mii phy_id so that we can query the link state */
/// for 79c70A mii =0 ,所以下面的代码忽略
///??????
if (lp->mii) {
/* lp->phycount and lp->phymask are set to 0 by memset above */
lp->mii_if.phy_id = ((lp->a.read_bcr(ioaddr, 33)) >> 5) & 0x1f;//BCR33放的是MDIO的起始地址
/* scan for PHYs */
for (i = 0; i < PCNET32_MAX_PHYS; i++) {/*扫描PHYS*/
unsigned short id1, id2;
id1 = mdio_read(dev, i, MII_PHYSID1);
if (id1 == 0xffff)
continue;
id2 = mdio_read(dev, i, MII_PHYSID2);
if (id2 == 0xffff)
continue;
if (i == 31 && ((chip_version + 1) & 0xfffe) == 0x2624)
continue; /* 79C971 & 79C972 have phantom phy at id 31 */
lp->phycount++;
lp->phymask |= (1 << i);
lp->mii_if.phy_id = i;
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_INFO PFX
"Found PHY %04x:%04x at address %d.\n",
id1, id2, i);
}
lp->a.write_bcr(ioaddr, 33, (lp->mii_if.phy_id) << 5);
if (lp->phycount > 1) {
lp->options |= PCNET32_PORT_MII;
}
}
/*
* 初始化lp的timer的数据结构。该timer作用是时不时的检查硬件链路状态,若硬件链路断掉,
* 如拔掉网线,将通知上层。该通知机制是通过workqueue实现的。
*/
init_timer(&lp->watchdog_timer);
lp->watchdog_timer.data = (unsigned long)dev;
lp->watchdog_timer.function = (void *)&pcnet32_watchdog;
/* The PCNET32-specific entries in the device structure. */
/*
* int (*open)(struct net_device *dev);
* 开启接口
*
* int (*hard_start_xmit) (struct sk_buff *skb, struct net_device *dev);
* 要求硬件开始送出一个封包
*
* int (*stop)(struct net_device *dev);
* 停用接口
* struct net_device_stats *(*get_stats)(struct net_device *dev);
* 每当应用程序需接口统计信息时,就会触动此作业方法.
* void (*set_multicast_list)(struct net_device *dev);
* 每当装置的群播名单或flags位掩码有任何变动时,就会触发此作业方法.
* int (*do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
* 执行特殊的ioctl命令.
* void (*tx_timeout)(struct net_device *dev);
* 若无法在一段合理时间内完成封包传输,则会呼叫此作业方法.
* int watchdog_timeo;
* 网络子系统断定传输逾期的最短时间间隔.
*/
dev->open = &pcnet32_open; ////开启接口
dev->hard_start_xmit = &pcnet32_start_xmit; ///要求硬件开始送出一个封包
dev->stop = &pcnet32_close; /// 关闭接口
dev->get_stats = &pcnet32_get_stats;
dev->set_multicast_list = &pcnet32_set_multicast_list;
dev->do_ioctl = &pcnet32_ioctl; ////给用户程序提供的控制设备的接口
dev->ethtool_ops = &pcnet32_ethtool_ops; ///给ethtool提供的支持
dev->tx_timeout = pcnet32_tx_timeout; ////打印错误信息,重启controller
dev->watchdog_timeo = (5 * HZ); ////传输超时的时间值,推测判断超时是上层的任务。
#ifdef CONFIG_NET_POLL_CONTROLLER
////???? poll_controller作用,由谁来调用,何时会被调用
dev->poll_controller = pcnet32_poll_controller;
#endif
/* Fill in the generic fields of the device structure. */
/// 注册网络设备,可以推测注册成功是返回0的
if (register_netdev(dev))
goto err_free_ring;
///把网络设备指针地址放入PCI设备中的设备指针中
///实际上干了 pdev->dev->driver_data = dev;
if (pdev) {
pci_set_drvdata(pdev, dev);
} else {
/// defined before: struct net_device *pcnet32_dev
//// 不知道这个是什么样的错误处理机制,
lp->next = pcnet32_dev;
pcnet32_dev = dev;
}
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_INFO "%s: registered as %s\n", dev->name, lp->name);
cards_found++;
/* enable LED writes */
/// 下面这句推测是错的,因为 他是要往 BCR2 bit 12 写的,但是bit12 was reserved
/// 实测写入是不会改变bcr2存储的值的,删掉这句话ping还是可以ping通
a->write_bcr(ioaddr, 2, a->read_bcr(ioaddr, 2) | 0x1000);
return 0;
err_free_ring:
pcnet32_free_ring(dev);
err_free_consistent:
pci_free_consistent(lp->pci_dev, sizeof(*lp->init_block),
lp->init_block, lp->init_dma_addr);
err_free_netdev:
free_netdev(dev);
err_release_region:
release_region(ioaddr, PCNET32_TOTAL_SIZE);
return ret;
}
////pcnet32_alloc_ring() 主要做了3件事,下面详细说明都以tx缓冲为例,rx类似
////1. 给 lp中的tx_ring 和 rx_ring 分配DMA一致映射缓冲区
////2. 分配一个dma_addr_t类型的数组,首地址分别放在 tx_dma_addr中,rx同
////3. 分配一个struc sk_buff 指针的数组,首地址tx_skbuff中,数组大小为 tx_ring_size,rx同,数组元素值均为0
/* if any allocation fails, caller must also call pcnet32_free_ring */
static int pcnet32_alloc_ring(struct net_device *dev, char *name)
{
struct pcnet32_private *lp = netdev_priv(dev);
/// 分配一致映射DMA缓冲区,缓冲区的大小和ring的大小(即 tx_ring_size 个 tx_head是相同的)
lp->tx_ring = pci_alloc_consistent(lp->pci_dev,
sizeof(struct pcnet32_tx_head) *
lp->tx_ring_size,
&lp->tx_ring_dma_addr);
if (lp->tx_ring == NULL) {
/*
*#define netif_msg_drv(p)
*((p)->msg_enable & NETIF_MSG_DRV) ,就是debug level
*/
if (netif_msg_drv(lp))
printk("\n" KERN_ERR PFX
"%s: Consistent memory allocation failed.\n",
name);
return -ENOMEM;
}
lp->rx_ring = pci_alloc_consistent(lp->pci_dev,
sizeof(struct pcnet32_rx_head) *
lp->rx_ring_size,
&lp->rx_ring_dma_addr);
if (lp->rx_ring == NULL) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR PFX
"%s: Consistent memory allocation failed.\n",
name);
return -ENOMEM;
}
//// 分配一个数组,param0是数组大小,param1是元素大小,param2是标志位
/// GFP_ATOMIC means both !wait (__GFP_WAIT not set) and use emergency pool
///\kcalloc — allocate memory for an array. The memory is set to zero.
lp->tx_dma_addr = kcalloc(lp->tx_ring_size, sizeof(dma_addr_t),
GFP_ATOMIC);
if (!lp->tx_dma_addr) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR PFX
"%s: Memory allocation failed.\n", name);
return -ENOMEM;
}
lp->rx_dma_addr = kcalloc(lp->rx_ring_size, sizeof(dma_addr_t),
GFP_ATOMIC);
if (!lp->rx_dma_addr) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR PFX
"%s: Memory allocation failed.\n", name);
return -ENOMEM;
}
/// tx_skbuff 的意思是套接字缓冲区,lp->tx_skbuff是 struct sk_buff** 类型的数据
lp->tx_skbuff = kcalloc(lp->tx_ring_size, sizeof(struct sk_buff *),
GFP_ATOMIC);
if (!lp->tx_skbuff) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR PFX
"%s: Memory allocation failed.\n", name);
return -ENOMEM;
}
lp->rx_skbuff = kcalloc(lp->rx_ring_size, sizeof(struct sk_buff *),
GFP_ATOMIC);
if (!lp->rx_skbuff) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR PFX
"%s: Memory allocation failed.\n", name);
return -ENOMEM;
}
return 0;
}
/// 释放pcnte32_alloc_ring()中分配的内存空间,并且将相关的指针置为NULL
static void pcnet32_free_ring(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
kfree(lp->tx_skbuff);
lp->tx_skbuff = NULL;
kfree(lp->rx_skbuff);
lp->rx_skbuff = NULL;
kfree(lp->tx_dma_addr);
lp->tx_dma_addr = NULL;
kfree(lp->rx_dma_addr);
lp->rx_dma_addr = NULL;
if (lp->tx_ring) {
pci_free_consistent(lp->pci_dev,
sizeof(struct pcnet32_tx_head) *
lp->tx_ring_size, lp->tx_ring,
lp->tx_ring_dma_addr);
lp->tx_ring = NULL;
}
if (lp->rx_ring) {
pci_free_consistent(lp->pci_dev,
sizeof(struct pcnet32_rx_head) *
lp->rx_ring_size, lp->rx_ring,
lp->rx_ring_dma_addr);
lp->rx_ring = NULL;
}
}
/****
*总结:注册中断程序,初始化网卡,分配相关缓冲区,设置运行参数
* 1.注册设备的中断服务程序
* 2.reset the pcnet32 controller and switch pcnet32 to 32bit mode
* 3.reset the auto-selecte bit(int BCR2),并且单网卡的情况下,最后置的
* 还是auto-selected mod即有controller自动选择下层 接口
* 4.handle full duplex setting,单网卡下,设置 half duplex operation,且不使用AUI port
* 5.设置GPSI,单个网卡下,GPSI为假
* 6.phy相关设置,但是由于程序bug,没有执行有意义的操作
* 7.设置lp->init_block->mode,单网卡情况下该值为0,即不改变网卡操作模式
* 8.载入多播表(这个目前还不是很清楚)
* 9.调用pcnet32_init_ring初始化 lp->rx_skbuff数组,并为每个sk_buff分配缓冲区,建立DMA映射
* 10.enable napi
* 11.Re-initialize the PCNET32, and start it when done
* 12.Print the link status /这个函数没有细看了,因为如果
* 13.start the watchdog
* 14.出错处理
*/
static int pcnet32_open(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
u16 val;
int i;
int rc;
unsigned long flags;
///irq启动时BIOS已经完成分配,这里是注册这个irq的中断服务程序,
if (request_irq(dev->irq, &pcnet32_interrupt,
lp->shared_irq ? IRQF_SHARED : 0, dev->name,
(void *)dev)) {
return -EAGAIN;
}
spin_lock_irqsave(&lp->lock, flags);
/* Check for a valid station address */
if (!is_valid_ether_addr(dev->dev_addr)) {
rc = -EINVAL;
goto err_free_irq;
}
/* Reset the PCNET32 */
lp->a.reset(ioaddr); ///\Reset causes the device to cease operation and clear its internal logic.
/* switch pcnet32 to 32bit mode */
////这里是指切换到32bit的software style
lp->a.write_bcr(ioaddr, 20, 2);
///\ 判断 lp->meg_enable
if (netif_msg_ifup(lp))
printk(KERN_DEBUG
"%s: pcnet32_open() irq %d tx/rx rings %#x/%#x init %#x.\n",
dev->name, dev->irq, (u32) (lp->tx_ring_dma_addr),
(u32) (lp->rx_ring_dma_addr),
(u32) (lp->init_dma_addr));
/***
* While in auto-selection mode, the interface in use is determined by an auto-sensing mechanism which checks the
* link status on the 10BASE-T port. If there is no active link status, then the device assumes an AUI connection
*bcr2 bit1置0,
*/
/* set/reset autoselect bit */
val = lp->a.read_bcr(ioaddr, 2) & ~2;
///\如果lp->options是 PCNET32_PORT_ASEL,则BCR2,bit1写入1,设置auto select,在只有一个芯片的情况下,是auto-selecte
if (lp->options & PCNET32_PORT_ASEL)
val |= 2;
lp->a.write_bcr(ioaddr, 2, val);
/* handle full duplex setting */
if (lp->mii_if.full_duplex) {
val = lp->a.read_bcr(ioaddr, 9) & ~3; //val的bit0 和bit1 置0
///\因为只有一个网卡时options == PCNET32_PROT_ASEL所以下面的语句都不会执行
if (lp->options & PCNET32_PORT_FD) {
val |= 1;
if (lp->options == (PCNET32_PORT_FD | PCNET32_PORT_AUI))
val |= 2;
} else if (lp->options & PCNET32_PORT_ASEL) {
/* workaround of xSeries250, turn on for 79C975 only */
if (lp->chip_version == 0x2627)
val |= 3;
}
///\ BCR9: Full-Duplex Control,bit0,bit1 置0,设置 half duplex operation,且不使用AUI port
lp->a.write_bcr(ioaddr, 9, val);
}
/* set/reset GPSI bit in test register */
///\ bit4 GPSIEN:General Purpose Serial Interface Enable.,GPSI is used as an interface between Ethernet MAC and PHY blocks.
val = lp->a.read_csr(ioaddr, 124) & ~0x10;
///\ 单个网卡芯片,条件为否,所以GPSI为假
if ((lp->options & PCNET32_PORT_PORTSEL) == PCNET32_PORT_GPSI)
val |= 0x10;
lp->a.write_csr(ioaddr, 124, val);
/* Allied Telesyn AT 2700/2701 FX are 100Mbit only and do not negotiate */
/*
* 这个不是编写AMD的网卡么,AT怎么乱入了。。。。推测可能他们两有一腿,不过由于79c970A*
* vendor_id(即subsystem_vendor)为1022h,The PCnet-PCI II controller DeviceID
* is 2000h,插define可知,和下面不一样,所以判断语句为假
*/
if (lp->pci_dev->subsystem_vendor == PCI_VENDOR_ID_AT &&
(lp->pci_dev->subsystem_device == PCI_SUBDEVICE_ID_AT_2700FX ||
lp->pci_dev->subsystem_device == PCI_SUBDEVICE_ID_AT_2701FX)) {
if (lp->options & PCNET32_PORT_ASEL) {
lp->options = PCNET32_PORT_FD | PCNET32_PORT_100;
if (netif_msg_link(lp))
printk(KERN_DEBUG
"%s: Setting 100Mb-Full Duplex.\n",
dev->name);
}
}
//// lp->phycount表示phy的数量
/*
* 由于mii==0,所以在pcnet32_probe1中,这个值就没有改过,推测alloc_etherdev时,
*可能自动识别了phy的数量,vmware下lp->phycount==0
*/
///下面的if-else在当前情况(VMWARE)配置下什么都没有干,实际运行了的执行语句,还是错误的,
if (lp->phycount < 2) {
/*
* 24 Jun 2004 according AMD, in order to change the PHY,
* DANAS (or DISPM for 79C976) must be set; then select the speed,
* duplex, and/or enable auto negotiation, and clear DANAS
*/
///\ mii ==0
if (lp->mii && !(lp->options & PCNET32_PORT_ASEL)) {
lp->a.write_bcr(ioaddr, 32,
lp->a.read_bcr(ioaddr, 32) | 0x0080);
/* disable Auto Negotiation, set 10Mpbs, HD */
val = lp->a.read_bcr(ioaddr, 32) & ~0xb8;
if (lp->options & PCNET32_PORT_FD)
val |= 0x10;
if (lp->options & PCNET32_PORT_100)
val |= 0x08;
lp->a.write_bcr(ioaddr, 32, val);
} else {
/*
* 额。。。。BCR32是不存在的。。。所以下面的语句没有任何价值,不过考虑到驱动工作正常,
* 所以好像不会造成什么disaster。
*/
if (lp->options & PCNET32_PORT_ASEL) {
lp->a.write_bcr(ioaddr, 32,
lp->a.read_bcr(ioaddr,
32) | 0x0080);
/* enable auto negotiate, setup, disable fd */
val = lp->a.read_bcr(ioaddr, 32) & ~0x98;
val |= 0x20;
lp->a.write_bcr(ioaddr, 32, val);
}
}
///判断句条件为真,所以else不会执行
} else {
int first_phy = -1;
u16 bmcr;
u32 bcr9;
struct ethtool_cmd ecmd;
/*
* There is really no good other way to handle multiple PHYs
* other than turning off all automatics
*/
val = lp->a.read_bcr(ioaddr, 2);
lp->a.write_bcr(ioaddr, 2, val & ~2);
val = lp->a.read_bcr(ioaddr, 32);
lp->a.write_bcr(ioaddr, 32, val & ~(1 << 7)); /* stop MII manager */
if (!(lp->options & PCNET32_PORT_ASEL)) {
/* setup ecmd */
ecmd.port = PORT_MII;
ecmd.transceiver = XCVR_INTERNAL;
ecmd.autoneg = AUTONEG_DISABLE;
ecmd.speed =
lp->
options & PCNET32_PORT_100 ? SPEED_100 : SPEED_10;
bcr9 = lp->a.read_bcr(ioaddr, 9);
if (lp->options & PCNET32_PORT_FD) {
ecmd.duplex = DUPLEX_FULL;
bcr9 |= (1 << 0);
} else {
ecmd.duplex = DUPLEX_HALF;
bcr9 |= ~(1 << 0);
}
lp->a.write_bcr(ioaddr, 9, bcr9);
}
for (i = 0; i < PCNET32_MAX_PHYS; i++) {
if (lp->phymask & (1 << i)) {
/* isolate all but the first PHY */
bmcr = mdio_read(dev, i, MII_BMCR);
if (first_phy == -1) {
first_phy = i;
mdio_write(dev, i, MII_BMCR,
bmcr & ~BMCR_ISOLATE);
} else {
mdio_write(dev, i, MII_BMCR,
bmcr | BMCR_ISOLATE);
}
/* use mii_ethtool_sset to setup PHY */
lp->mii_if.phy_id = i;
ecmd.phy_address = i;
if (lp->options & PCNET32_PORT_ASEL) {
mii_ethtool_gset(&lp->mii_if, &ecmd);
ecmd.autoneg = AUTONEG_ENABLE;
}
mii_ethtool_sset(&lp->mii_if, &ecmd);
}
}
lp->mii_if.phy_id = first_phy;
if (netif_msg_link(lp))
printk(KERN_INFO "%s: Using PHY number %d.\n",
dev->name, first_phy);
}
#ifdef DO_DXSUFLO
///for 79C970A lp->dxsuflo==0,所以条件为假
if (lp->dxsuflo) { /* Disable transmit stop on underflow */
val = lp->a.read_csr(ioaddr, CSR3);
val |= 0x40;
lp->a.write_csr(ioaddr, CSR3, val);
}
#endif
///\PCNET32_PORT_PORTSEL = 0x03, options=0x04,so mode = 0;
lp->init_block->mode =
cpu_to_le16((lp->options & PCNET32_PORT_PORTSEL) << 7);
///TODO\功能推测就是产生filter的值,然后填入对应的CSR中,
pcnet32_load_multicast(dev);
///init_ring初始化 lp->rx_skbuff数组,并为每个sk_buff分配缓冲区,建立DMA映射
if (pcnet32_init_ring(dev)) {
rc = -ENOMEM;
goto err_free_ring;
}
#ifdef CONFIG_PCNET32_NAPI
/// enable napi
napi_enable(&lp->napi);
#endif
/* Re-initialize the PCNET32, and start it when done. */
lp->a.write_csr(ioaddr, 1, (lp->init_dma_addr & 0xffff));
lp->a.write_csr(ioaddr, 2, (lp->init_dma_addr >> 16));
/**DM
* 下面不应该有09
* CSR4: Test and Features Control,屏蔽Jabber Error,Transmit Start,Receive Collision Counter Overflow产生的中断
*/
lp->a.write_csr(ioaddr, CSR4, 0x0915); /* auto tx pad */
///INIT 启动init block从内存写入网卡
lp->a.write_csr(ioaddr, CSR0, CSR0_INIT);
////start the interface's transmit queue,驱动程序调用这个函数来告诉内核网络子系统,现在可以开始数据包的发送。
netif_start_queue(dev);
////vmware配备的网卡是70c970A
if (lp->chip_version >= PCNET32_79C970A) {
/* Print the link status and start the watchdog */
pcnet32_check_media(dev, 1);
/* mod_timer - modify a timer's timeout
* @timer: the timer to be modified
* @expires: new timeout in jiffies
*
* mod_timer() is a more efficient way to update the expire field of an
* active timer (if the timer is inactive it will be activated)
*/
///#define PCNET32_WATCHDOG_TIMEOUT (jiffies + (2 * HZ)) 不明白为什么要用这个作为expire值,
/// timeout是一个非常大的数,所以推测作者只是想用一下mod_timer的active the timer的功能
mod_timer(&(lp->watchdog_timer), PCNET32_WATCHDOG_TIMEOUT);
}
i = 0;
////循环等待,当init block写入网卡寄存器完成,contorller会自动将CSR0_IDON位置1,该位由0变为1时就说明init block传输完成了
while (i++ < 100)
if (lp->a.read_csr(ioaddr, CSR0) & CSR0_IDON)
break;
/*
* We used to clear the InitDone bit, 0x0100, here but Mark Stockton
* reports that doing so triggers a bug in the '974.
*/
/// CSR0_NORMAL = (CSR0_START | CSR0_INTEN), 下面讲 CSR0中的STRT位和EINA位置1
////STRT位,该位置1表示启动网卡控制器发送和接受帧,并开始执行缓冲区管理操作,为1表示不能接受发送数据
////IENA位,该位为1表示允许中断,该位为0表示关中断,IENA置1时还会将CSR0的STOP位清0
lp->a.write_csr(ioaddr, CSR0, CSR0_NORMAL);
if (netif_msg_ifup(lp))
printk(KERN_DEBUG
"%s: pcnet32 open after %d ticks, init block %#x csr0 %4.4x.\n",
dev->name, i,
(u32) (lp->init_dma_addr),
lp->a.read_csr(ioaddr, CSR0));
spin_unlock_irqrestore(&lp->lock, flags);
return 0; /* Always succeed */
err_free_ring:
/* free any allocated skbuffs */
pcnet32_purge_rx_ring(dev);
/*
* Switch back to 16bit mode to avoid problems with dumb
* DOS packet driver after a warm reboot
*/
lp->a.write_bcr(ioaddr, 20, 4);
err_free_irq:
spin_unlock_irqrestore(&lp->lock, flags);
free_irq(dev->irq, dev);
return rc;
}
/*
* The LANCE has been halted for one reason or another (busmaster memory
* arbitration error, Tx FIFO underflow, driver stopped it to reconfigure,
* etc.). Modern LANCE variants always reload their ring-buffer
* configuration when restarted, so we must reinitialize our ring
* context before restarting. As part of this reinitialization,
* find all packets still on the Tx ring and pretend that they had been
* sent (in effect, drop the packets on the floor) - the higher-level
* protocols will time out and retransmit. It'd be better to shuffle
* these skbs to a temp list and then actually re-Tx them after
* restarting the chip, but I'm too lazy to do so right now. [email protected]
*/
///取消tx_ring每个descriptor的数据缓冲区的DMA映射(如果有缓冲区的话),并释放缓冲区
static void pcnet32_purge_tx_ring(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
int i;
for (i = 0; i < lp->tx_ring_size; i++) {
lp->tx_ring[i].status = 0; /* CPU owns buffer */
wmb(); /* Make sure adapter sees owner change */
if (lp->tx_skbuff[i]) {
pci_unmap_single(lp->pci_dev, lp->tx_dma_addr[i],
lp->tx_skbuff[i]->len,
PCI_DMA_TODEVICE);
dev_kfree_skb_any(lp->tx_skbuff[i]);
}
lp->tx_skbuff[i] = NULL;
lp->tx_dma_addr[i] = 0;
}
}
/* Initialize the PCNET32 Rx and Tx rings. */
/***
* 1.为rx_skbuff数组每个元素分配缓冲区,并建立DMA映射FROM_DEVICE所以该缓冲区仅仅,注意
* rx_skbuff的元素数量是和rx_ring_size相同的,所以推测他们之间应该是一一对应的关系,
* 2.tx_skbuff需要使用时才分配缓冲区
* 3.再次填充lp 中的init block,原因不明,而且填充的值都没有变过,所以感觉这里有点多余
*/
static int pcnet32_init_ring(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
int i;
lp->tx_full = 0;
lp->cur_rx = lp->cur_tx = 0;
lp->dirty_rx = lp->dirty_tx = 0;
///\ rx_ring_size是在probe时指定的,并写入init block了
for (i = 0; i < lp->rx_ring_size; i++) {
struct sk_buff *rx_skbuff = lp->rx_skbuff[i];
/*
* lp->rx_skbuff初始值均为0,下面是为lp->rx_skbuff初始化,
* 为每个数据元素分配缓冲区,并是以太网首部对其
*/
if (rx_skbuff == NULL) {
if (!
(rx_skbuff = lp->rx_skbuff[i] =
dev_alloc_skb(PKT_BUF_SKB))) {
/* there is not much, we can do at this point */
if (netif_msg_drv(lp))
printk(KERN_ERR
"%s: pcnet32_init_ring dev_alloc_skb failed.\n",
dev->name);
return -1;
}
/// 预留出NET_IP_ALIGN长度的首部,因为以太网头部14bity,这里的宏为2,正好16字节,边界对其(4字节)
skb_reserve(rx_skbuff, NET_IP_ALIGN);
}
rmb();
/*
* 为每一个时sk_buff的packet数据区(sk_buff中的而一个用来存放packet的区)建立DMA映射,
* 并将DMA映射地址放在dma_addr数组中,PCI_DAM_FROMDEVICE表明该缓冲区只是
* 用来给device写入的,umap之后驱动才能读取里面的数据
*/
if (lp->rx_dma_addr[i] == 0)
lp->rx_dma_addr[i] =
pci_map_single(lp->pci_dev, rx_skbuff->data,
PKT_BUF_SIZE, PCI_DMA_FROMDEVICE);
lp->rx_ring[i].base = cpu_to_le32(lp->rx_dma_addr[i]);
lp->rx_ring[i].buf_length = cpu_to_le16(NEG_BUF_SIZE);
wmb(); /* Make sure owner changes after all others are visible */
lp->rx_ring[i].status = cpu_to_le16(0x8000); //将own位置1,contorller为owner
}
/* The Tx buffer address is filled in as needed, but we do need to clear
* the upper ownership bit. */
for (i = 0; i < lp->tx_ring_size; i++) {
lp->tx_ring[i].status = 0; /* CPU owns buffer */
wmb(); /* Make sure adapter sees owner change */
lp->tx_ring[i].base = 0;
lp->tx_dma_addr[i] = 0;
}
///prob\还不清楚为什么要在这里再次填充init block
lp->init_block->tlen_rlen =
cpu_to_le16(lp->tx_len_bits | lp->rx_len_bits);
for (i = 0; i < 6; i++)
lp->init_block->phys_addr[i] = dev->dev_addr[i];
lp->init_block->rx_ring = cpu_to_le32(lp->rx_ring_dma_addr);
lp->init_block->tx_ring = cpu_to_le32(lp->tx_ring_dma_addr);
wmb(); /* Make sure all changes are visible */
return 0;
}
////restart
/* the pcnet32 has been issued a stop or reset. Wait for the stop bit
* then flush the pending transmit operations, re-initialize the ring,
* and tell the chip to initialize.
*/
static void pcnet32_restart(struct net_device *dev, unsigned int csr0_bits)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
int i;
/* wait for stop */
for (i = 0; i < 100; i++)
if (lp->a.read_csr(ioaddr, CSR0) & CSR0_STOP)
break;
///等待超时,打印错误信息
if (i >= 100 && netif_msg_drv(lp))
printk(KERN_ERR
"%s: pcnet32_restart timed out waiting for stop.\n",
dev->name);
////释放tx_ring持有的资源,缓冲区和DMA映射
pcnet32_purge_tx_ring(dev);
////(重新)初始化tx 和 rx ring
if (pcnet32_init_ring(dev))
return;
/*
* 如果上面的初始化失败,则 prob/// 不清楚为什么下面的能reinit,
* 感觉只是重新了initblock,然后设置一下网卡,tx_ring rx_ring 并没有回来啊
*/
/* ReInit Ring */
/* INIT assertion enables the PCnet-PCI II controller to begin the initialization
* procedure which reads the initialization block from memory.
* lp->a.write_csr(ioaddr, CSR0, CSR0_INIT);
*/
i = 0;
////等待init写入网卡完成
while (i++ < 1000)
if (lp->a.read_csr(ioaddr, CSR0) & CSR0_IDON)
break;
///把参数写入寄存器
lp->a.write_csr(ioaddr, CSR0, csr0_bits);
}
///主要用于内核调用它解决发送超时的问题,超时可能的原因是设备故障或者传输中线路中断等,解决的方法大多数时候是把硬件设备复位。
///下面的网卡做的事情就是发送超时时,reset contorller。并打印相关错误信息
static void pcnet32_tx_timeout(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr, flags;
spin_lock_irqsave(&lp->lock, flags);
/* Transmitter timeout, serious problems. */
if (pcnet32_debug & NETIF_MSG_DRV)
printk(KERN_ERR
"%s: transmit timed out, status %4.4x, resetting.\n",
dev->name, lp->a.read_csr(ioaddr, CSR0));
lp->a.write_csr(ioaddr, CSR0, CSR0_STOP);
dev->stats.tx_errors++;
if (netif_msg_tx_err(lp)) {
int i;
printk(KERN_DEBUG
" Ring data dump: dirty_tx %d cur_tx %d%s cur_rx %d.",
lp->dirty_tx, lp->cur_tx, lp->tx_full ? " (full)" : "",
lp->cur_rx);
for (i = 0; i < lp->rx_ring_size; i++)
printk("%s %08x %04x %08x %04x", i & 1 ? "" : "\n ",
le32_to_cpu(lp->rx_ring[i].base),
(-le16_to_cpu(lp->rx_ring[i].buf_length)) &
0xffff, le32_to_cpu(lp->rx_ring[i].msg_length),
le16_to_cpu(lp->rx_ring[i].status));
for (i = 0; i < lp->tx_ring_size; i++)
printk("%s %08x %04x %08x %04x", i & 1 ? "" : "\n ",
le32_to_cpu(lp->tx_ring[i].base),
(-le16_to_cpu(lp->tx_ring[i].length)) & 0xffff,
le32_to_cpu(lp->tx_ring[i].misc),
le16_to_cpu(lp->tx_ring[i].status));
printk("\n");
}
pcnet32_restart(dev, CSR0_NORMAL);
dev->trans_start = jiffies;
netif_wake_queue(dev);
spin_unlock_irqrestore(&lp->lock, flags);
}
/*
* 函数功能:
* 1.把sk_buff的长度、基地址、数据缓冲区地址等放入tx_ring,tx_skbuff等领中,
* 2.设置 descriptor的status 、misc值,目前具体各位干嘛的还没细看,但是代码填的值肯定是合适的
* 3.写CSR0,设置允许中断,并启动数据包发送
* 4.判断发送队列是否已经满了,满了就进行流量控制.(即通知网络子系统暂停数据包传输)
* 5. 没有发现字节不够时,填充数据的行为,这个是网卡硬件自动完成的??///prob
*/
static int pcnet32_start_xmit(struct sk_buff *skb, struct net_device *dev) //发包时会调用该函数
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
u16 status;
int entry;
unsigned long flags;
/*
* 两个功能,
* 1,自旋锁的功能,
* 2.关中断
* flag用于记录当前中断的状态,用于unlock时恢复之前的CPU中断状态(原来
* 如果是关的就还是关的)spin_lock_irqsave(&lp->lock, flags);
*/
/// 下面的函数是个宏 等于((lp)->msg_enable & NETIF_MSG_TX_QUEUED),debug level的事情
if (netif_msg_tx_queued(lp)) {
printk(KERN_DEBUG
"%s: pcnet32_start_xmit() called, csr0 %4.4x.\n",
dev->name, lp->a.read_csr(ioaddr, CSR0));
}
/* Default status -- will not enable Successful-TxDone
* interrupt when that option is available to us.
*/
status = 0x8300;
/* Fill in a Tx ring entry */
/* Mask to ring buffer boundary. */
entry = lp->cur_tx & lp->tx_mod_mask;
/* Caution: the write order is important here, set the status
* with the "ownership" bits last. */
lp->tx_ring[entry].length = cpu_to_le16(-skb->len);//填写length的补码 额。。这里有点奇怪啊。。
lp->tx_ring[entry].misc = 0x00000000; ////对应TMD2,具体含义暂时不看
lp->tx_skbuff[entry] = skb;
lp->tx_dma_addr[entry] =
pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);//将地址翻译成物理地址
lp->tx_ring[entry].base = cpu_to_le32(lp->tx_dma_addr[entry]);
wmb(); /* Make sure owner changes after all others are visible */ //memory barrier
///其他位暂时不管,反正这么填就对了
lp->tx_ring[entry].status = cpu_to_le16(status);//将own位置1,即将ring buffer控制权交给网卡。
lp->cur_tx++;
dev->stats.tx_bytes += skb->len;
/* Trigger an immediate send poll. */
//CSR0_TXPOLL=0x8,CSR0_INTEN=0x40 ,即将第3位和第6位置1。即触发传输包,并使网卡中断生效
lp->a.write_csr(ioaddr, CSR0, CSR0_INTEN | CSR0_TXPOLL);
dev->trans_start = jiffies; //DM/ jiffies是内核全局变量,表示系统启动以来是clock tick次数
///netif_stop_queue一般用于驱动程序通知网络子系统暂停数据包传输,从来进行实现流量控制,判断的逻辑还是不太明白
///是个环,检测到下一个不为空,说明已经满了
if (lp->tx_ring[(entry + 1) & lp->tx_mod_mask].base != 0) {
lp->tx_full = 1;
netif_stop_queue(dev);
}
spin_unlock_irqrestore(&lp->lock, flags);
return 0;
}
/**DM
* 这是中断服务程序
* 1.读取csr0,判断有没有错误发生,有的话进行错误处理
* 2.写CSR3,屏蔽中断,如果NAPI没有被禁止,且不存在已被调度的NAPI,则调度NAPI(
* napi_struct结构挂入全局的poll_list中。并生成一个软中断。)
* Qes: 为什么这里使用spin_lock而不用使用 spin_lock_irqsave()机制
*/
/* The PCNET32 interrupt handler. */
static irqreturn_t
pcnet32_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct pcnet32_private *lp;
unsigned long ioaddr;
u16 csr0;
/// max_interrupt_work 默认值为2,insmods时可以传参数改变,推测是NAPI用来作为切换中断模式和轮询模式的接线
/// boguscnt是用来计数的
int boguscnt = max_interrupt_work;
ioaddr = dev->base_addr;
lp = netdev_priv(dev);
spin_lock(&lp->lock);
csr0 = lp->a.read_csr(ioaddr, CSR0);
///CSR0第15位置1表示网卡出错了。第11位置1表示Memory Error,第10位置1表示收到收包中断。第9位置1表示收到controller的发包中断,
///第8位是IDON位,init block传输完成之后这一位就一直是1了) 所以这段代码用来处理中断和错误
while ((csr0 & 0x8f00) && --boguscnt >= 0) { /// 网卡没有错误,并且还有任务处理配额
/////?????含义
if (csr0 == 0xffff) {
break; /* PCMCIA remove happened */ ///不清楚PCMCIA具体指什么,可能是指网卡被拔了
}
/* Acknowledge all of the current interrupt sources ASAP. */ //ASAP = as soon as possible
/*
*CSR0的 bit0~bit5
* 写0是无法写入的,也不会产生影响,所以下面的代码只会置INEA(interrupt enable)为0,即禁止中断防止网卡上的中断重入
* lp->a.write_csr(ioaddr, CSR0, csr0 & ~0x004f);
*/
///出错处理开始(出错处理就是打印一些信息,或者对错误计数器进行累加)
//#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR),就是进行debug devel的判断
if (netif_msg_intr(lp))
printk(KERN_DEBUG
"%s: interrupt csr0=%#2.2x new csr=%#2.2x.\n",
dev->name, csr0, lp->a.read_csr(ioaddr, CSR0));
/* Log misc errors. */
//CSR0第14位是reserve位。搞不懂,这个地方是一个bug,应该是0x8000才对。因为手册上15位才是ERR位。
if (csr0 & 0x4000)
dev->stats.tx_errors++; /* Tx babble. */
///bit12 MISS位 Missed Frame is set by the PCnet-PCI II controller when it looses an incoming receive frame
///because a receive descriptorwas not available
if (csr0 & 0x1000) {//CSR0 第12位为1,表示丢失了一个incoming frame
/*
* This happens when our receive ring is full. This
* shouldn't be a problem as we will see normal rx
* interrupts for the frames in the receive ring. But
* there are some PCI chipsets (I can reproduce this
* on SP3G with Intel saturn chipset) which have
* sometimes problems and will fill up the receive
* ring with error descriptors. In this situation we
* don't get a rx interrupt, but a missed frame
* interrupt sooner or later.
*/
dev->stats.rx_errors++; /* Missed a Rx frame. */
}
if (csr0 & 0x0800) {//CSR0第11位置1表示Memory Error。
if (netif_msg_drv(lp))//#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV),即判断是否写log
printk(KERN_ERR
"%s: Bus master arbitration failure, status %4.4x.\n",
dev->name, csr0);
/* unlike for the lance, there is no restart needed */
}
////出错处理结束
#ifdef CONFIG_PCNET32_NAPI
/*
* netif_rx_schedule_prep的实现只有一句:return napi_schedule_prep(napi);
* 也就是只有&lp->napi管作用,napi_schedule_prep也只是查看一下napi中的state中的
* NAPI_STATE_DISABLE位是否被置。如果没有被置的话,则设置NAPI_STATE_SCHED位。即允许napi。
*/
/*
* netif_rx_schedule_prep的功能:
* Test if NAPI routine is already running, and if not mark it as running.
* This is used as a condition variable insure only one NAPI poll instance
* runs. We also make sure there is no pending NAPI disable.
*/
if (netif_rx_schedule_prep(dev, &lp->napi)) {
u16 val;
/* set interrupt masks */
val = lp->a.read_csr(ioaddr, CSR3);//CSR3中存放的是中断屏蔽字以及deferrable control
/**DM
* 0x5f00设置bit 8到12,和14位,置1
* bit14 屏蔽 babble错误 Babble is a transmitter time-out error
* bit12 Missed Frame Mask.
* bit11 Memory Error Mask
* bit10 Receive Interrupt Mask
* bit9 Transmit Interrupt Mask
* bit8 Initialization Done Mask
* CSR3上的屏蔽字就这么几个
*/
val |= 0x5f00;
///屏蔽中断
lp->a.write_csr(ioaddr, CSR3, val);
mmiowb(); //这是memory_barrier,但x86实现其为空
//其实现只有一句话: __napi_schedule(napi);,即将lp中的napi_struct结构挂入全局的poll_list中。并生成一个软中断。
///这里到底挂上去有哪些内容不清楚,
////??????看看napi 软中断 具体实现机制,然后再注释,把对napi的理解写上去
__netif_rx_schedule(dev, &lp->napi);
/*
void __napi_schedule(struct napi_struct *n){
unsigned long flags;
local_irq_save(flags);
list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
local_irq_restore(flags);
}
//注意:这里的off不是关闭,而是offset的意思。
#define __raise_softirq_irqoff(nr) do { or_softirq_pending(1UL << (nr)); } while (0)
*/
break;
}
#else
//DM/下面是没有napi时的运行选项
pcnet32_rx(dev, lp->napi.weight);
if (pcnet32_tx(dev)) {
/* reset the chip to clear the error condition, then restart */
lp->a.reset(ioaddr);
lp->a.write_csr(ioaddr, CSR4, 0x0915); /* auto tx pad */
pcnet32_restart(dev, CSR0_START);
netif_wake_queue(dev);
}
#endif
csr0 = lp->a.read_csr(ioaddr, CSR0);
}
#ifndef CONFIG_PCNET32_NAPI
/* Set interrupt enable. */
////CSR0只有 bit6写1,其他位写0都是无效的
lp->a.write_csr(ioaddr, CSR0, CSR0_INTEN);//开中断
#endif
if (netif_msg_intr(lp))
printk(KERN_DEBUG "%s: exiting interrupt, csr0=%#4.4x.\n",
dev->name, lp->a.read_csr(ioaddr, CSR0));
spin_unlock(&lp->lock);
return IRQ_HANDLED;
}
/***
* close the controller
* 关闭timer,disable napi,设置相关寄存器值,释放申请的资源
*/
static int pcnet32_close(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr;
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long flags;
///deactivate a timer and wait for the handler to finish.
del_timer_sync(&lp->watchdog_timer);
netif_stop_queue(dev);
#ifdef CONFIG_PCNET32_NAPI
napi_disable(&lp->napi);
#endif
spin_lock_irqsave(&lp->lock, flags);
dev->stats.rx_missed_errors = lp->a.read_csr(ioaddr, 112);
if (netif_msg_ifdown(lp))
printk(KERN_DEBUG
"%s: Shutting down ethercard, status was %2.2x.\n",
dev->name, lp->a.read_csr(ioaddr, CSR0));
/* We stop the PCNET32 here -- it occasionally polls memory if we don't. */
lp->a.write_csr(ioaddr, CSR0, CSR0_STOP);
/*
* Switch back to 16bit mode to avoid problems with dumb
* DOS packet driver after a warm reboot
*/
lp->a.write_bcr(ioaddr, 20, 4);
spin_unlock_irqrestore(&lp->lock, flags);
free_irq(dev->irq, dev);
spin_lock_irqsave(&lp->lock, flags);
pcnet32_purge_rx_ring(dev);
pcnet32_purge_tx_ring(dev);
spin_unlock_irqrestore(&lp->lock, flags);
return 0;
}
static struct net_device_stats *pcnet32_get_stats(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
unsigned long flags;
spin_lock_irqsave(&lp->lock, flags);
dev->stats.rx_missed_errors = lp->a.read_csr(ioaddr, 112);
spin_unlock_irqrestore(&lp->lock, flags);
return &dev->stats;
}
///todo\具体实现逻辑还没有理解,不过可以大概看出这个函数的逻辑就是产生新的filter,然后
///将其写入对应的CSR中,具体逻辑还需要继续研究,先放着
/* taken from the sunlance driver, which it took from the depca driver */
static void pcnet32_load_multicast(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
volatile struct pcnet32_init_block *ib = lp->init_block;
volatile __le16 *mcast_table = (__le16 *)ib->filter;
struct dev_mc_list *dmi = dev->mc_list;
unsigned long ioaddr = dev->base_addr;
char *addrs;
int i;
u32 crc;
/* set all multicast bits */
/***
* 驱动中没有看到dev->flags的赋值语句,推测可能是有默认值,实测为0x1002
* #define IFF_ALLMULTI 0x200 /// receive all multicast packets
* 因为flags的值没有被改过,所以条件为假
*/
if (dev->flags & IFF_ALLMULTI) {
ib->filter[0] = cpu_to_le32(~0U);
ib->filter[1] = cpu_to_le32(~0U);
lp->a.write_csr(ioaddr, PCNET32_MC_FILTER, 0xffff);
lp->a.write_csr(ioaddr, PCNET32_MC_FILTER+1, 0xffff);
lp->a.write_csr(ioaddr, PCNET32_MC_FILTER+2, 0xffff);
lp->a.write_csr(ioaddr, PCNET32_MC_FILTER+3, 0xffff);
return;
}
/* clear the multicast filter */
ib->filter[0] = 0;
ib->filter[1] = 0;
///todo\下面添加多播地址的逻辑让人有点费解,但是可以确定他的功能就是添加多播地址,并将新的logitc address
/////filter写入对应的CSR中
/* Add addresses */
for (i = 0; i < dev->mc_count; i++) {
addrs = dmi->dmi_addr;
dmi = dmi->next;
/* multicast address? */
///\不是则回到循环开始,是就继续往后走,这里认为bit47为1为多播地址(2012年后已经改为bit0为1)
///\需要注意的一个问题是 struct dev_mc_list.dmi_addr只有8位,原因不明
if (!(*addrs & 1))
continue;
///\地址如果识别是逻辑地址,则进行CRC计算,产生filter位号(6bits)
///,用来指定filter中的位置(64个位置),如果对应位为1,那么接受该地址的包
///\参数6表示值使用addrs的低六位
crc = ether_crc_le(6, addrs);
crc = crc >> 26; ////只需要crc的高六位
mcast_table[crc >> 4] |= cpu_to_le16(1 << (crc & 0xf));
}
for (i = 0; i < 4; i++)
lp->a.write_csr(ioaddr, PCNET32_MC_FILTER + i,
le16_to_cpu(mcast_table[i]));
return;
}
/*
* Set or clear the multicast filter for this adaptor.
*/
static void pcnet32_set_multicast_list(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr, flags;
struct pcnet32_private *lp = netdev_priv(dev);
int csr15, suspended;
spin_lock_irqsave(&lp->lock, flags);
suspended = pcnet32_suspend(dev, &flags, 0);
csr15 = lp->a.read_csr(ioaddr, CSR15);
if (dev->flags & IFF_PROMISC) {
/* Log any net taps. */
if (netif_msg_hw(lp))
printk(KERN_INFO "%s: Promiscuous mode enabled.\n",
dev->name);
lp->init_block->mode =
cpu_to_le16(0x8000 | (lp->options & PCNET32_PORT_PORTSEL) <<
7);
lp->a.write_csr(ioaddr, CSR15, csr15 | 0x8000);
} else {
lp->init_block->mode =
cpu_to_le16((lp->options & PCNET32_PORT_PORTSEL) << 7);
lp->a.write_csr(ioaddr, CSR15, csr15 & 0x7fff);
pcnet32_load_multicast(dev);
}
if (suspended) {
int csr5;
/* clear SUSPEND (SPND) - CSR5 bit 0 */
csr5 = lp->a.read_csr(ioaddr, CSR5);
lp->a.write_csr(ioaddr, CSR5, csr5 & (~CSR5_SUSPEND));
} else {
lp->a.write_csr(ioaddr, CSR0, CSR0_STOP);
pcnet32_restart(dev, CSR0_NORMAL);
netif_wake_queue(dev);
}
spin_unlock_irqrestore(&lp->lock, flags);
}
/* This routine assumes that the lp->lock is held */
////下面的函数做的是mii读相关的工作,但是因为 lp->mii == 0, 所以什么都不会做
static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
u16 val_out;
if (!lp->mii)
return 0;
lp->a.write_bcr(ioaddr, 33, ((phy_id & 0x1f) << 5) | (reg_num & 0x1f));
val_out = lp->a.read_bcr(ioaddr, 34);
return val_out;
}
/* This routine assumes that the lp->lock is held */
////下面的函数做的是mii写相关的工作,但是因为 lp->mii == 0, 所以什么都不会做
static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
if (!lp->mii)
return;
lp->a.write_bcr(ioaddr, 33, ((phy_id & 0x1f) << 5) | (reg_num & 0x1f));
lp->a.write_bcr(ioaddr, 34, val);
}
static int pcnet32_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct pcnet32_private *lp = netdev_priv(dev);
int rc;
unsigned long flags;
/* SIOC[GS]MIIxxx ioctls */
if (lp->mii) {
spin_lock_irqsave(&lp->lock, flags);
rc = generic_mii_ioctl(&lp->mii_if, if_mii(rq), cmd, NULL);
spin_unlock_irqrestore(&lp->lock, flags);
} else {
rc = -EOPNOTSUPP;
}
return rc;
}
static int pcnet32_check_otherphy(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
struct mii_if_info mii = lp->mii_if;
u16 bmcr;
int i;
for (i = 0; i < PCNET32_MAX_PHYS; i++) {
if (i == lp->mii_if.phy_id)
continue; /* skip active phy */
if (lp->phymask & (1 << i)) {
mii.phy_id = i;
if (mii_link_ok(&mii)) {
/* found PHY with active link */
if (netif_msg_link(lp))
printk(KERN_INFO
"%s: Using PHY number %d.\n",
dev->name, i);
/* isolate inactive phy */
bmcr =
mdio_read(dev, lp->mii_if.phy_id, MII_BMCR);
mdio_write(dev, lp->mii_if.phy_id, MII_BMCR,
bmcr | BMCR_ISOLATE);
/* de-isolate new phy */
bmcr = mdio_read(dev, i, MII_BMCR);
mdio_write(dev, i, MII_BMCR,
bmcr & ~BMCR_ISOLATE);
/* set new phy address */
lp->mii_if.phy_id = i;
return 1;
}
}
}
return 0;
}
/*
* Show the status of the media. Similar to mii_check_media however it
* correctly shows the link speed for all (tested) pcnet32 variants.
* Devices with no mii just report link state without speed.
*
* Caller is assumed to hold and release the lp->lock.
*/
///\额。。。判断curr_link那块让人看不懂,
static void pcnet32_check_media(struct net_device *dev, int verbose)
{
struct pcnet32_private *lp = netdev_priv(dev);
int curr_link;
int prev_link = netif_carrier_ok(dev) ? 1 : 0;
u32 bcr9;
if (lp->mii) {
curr_link = mii_link_ok(&lp->mii_if);
} else {
ulong ioaddr = dev->base_addr; /* card base I/O address */
curr_link = (lp->a.read_bcr(ioaddr, 4) != 0xc0);//BCR4是网卡指示灯的状态。
}
if (!curr_link) {//链接已断
if (prev_link || verbose) {
netif_carrier_off(dev);//这将触发一个消息,通知上层链路已断,该功能是通过workqueue完成的。
if (netif_msg_link(lp))
printk(KERN_INFO "%s: link down\n", dev->name);
}
if (lp->phycount > 1) {
curr_link = pcnet32_check_otherphy(dev);
prev_link = 0;
}
} else if (verbose || !prev_link) {
netif_carrier_on(dev);
if (lp->mii) {
if (netif_msg_link(lp)) {
struct ethtool_cmd ecmd;
mii_ethtool_gset(&lp->mii_if, &ecmd);
printk(KERN_INFO
"%s: link up, %sMbps, %s-duplex\n",
dev->name,
(ecmd.speed == SPEED_100) ? "100" : "10",
(ecmd.duplex ==
DUPLEX_FULL) ? "full" : "half");
}
bcr9 = lp->a.read_bcr(dev->base_addr, 9);
if ((bcr9 & (1 << 0)) != lp->mii_if.full_duplex) {
if (lp->mii_if.full_duplex)
bcr9 |= (1 << 0);
else
bcr9 &= ~(1 << 0);
lp->a.write_bcr(dev->base_addr, 9, bcr9);
}
} else {
if (netif_msg_link(lp))
printk(KERN_INFO "%s: link up\n", dev->name);
}
}
}
/*
* Check for loss of link and link establishment.
* Can not use mii_check_media because it does nothing if mode is forced.
*/
static void pcnet32_watchdog(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long flags;
/* Print the link status if it has changed */
spin_lock_irqsave(&lp->lock, flags);
///下面只是打印信息
pcnet32_check_media(dev, 0);
spin_unlock_irqrestore(&lp->lock, flags);
////重新启动计时器
mod_timer(&(lp->watchdog_timer), PCNET32_WATCHDOG_TIMEOUT);
}
///suspend,推测是系统为了省电,在不需要网络传输的时候断电
static int pcnet32_pm_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
if (netif_running(dev)) {
///Mark device as removed from system and therefore no longer available.
netif_device_detach(dev);
///close the controller
pcnet32_close(dev);
}
///pci_save_state - save the PCI configuration space of a device before suspending
pci_save_state(pdev);
///pci_choose_state - Returns PCI power state suitable for given device and given system
///pci_set_power_state - Set the power state of a PCI device
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int pcnet32_pm_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
pci_set_power_state(pdev, PCI_D0);
///pci_restore_state - Restore the saved state of a PCI device
pci_restore_state(pdev);
if (netif_running(dev)) {
pcnet32_open(dev);
///Mark device as attached from system and restart if needed.
netif_device_attach(dev);
}
return 0;
}
///释放该设备申请的所有资源,unregister the net_device
static void __devexit pcnet32_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
if (dev) {
struct pcnet32_private *lp = netdev_priv(dev);
unregister_netdev(dev);
pcnet32_free_ring(dev);
release_region(dev->base_addr, PCNET32_TOTAL_SIZE);
pci_free_consistent(lp->pci_dev, sizeof(*lp->init_block),
lp->init_block, lp->init_dma_addr);
free_netdev(dev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
}
static struct pci_driver pcnet32_driver = {
.name = DRV_NAME,
.probe = pcnet32_probe_pci,
.remove = __devexit_p(pcnet32_remove_one),
.id_table = pcnet32_pci_tbl,///id_table是一个结构体数组,用来存放驱动程序适用的设备信息
.suspend = pcnet32_pm_suspend,
.resume = pcnet32_pm_resume,
};
/* An additional parameter that may be passed in... */
static int debug = -1;
static int tx_start_pt = -1;
static int pcnet32_have_pci;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, DRV_NAME " debug level");
module_param(max_interrupt_work, int, 0);
MODULE_PARM_DESC(max_interrupt_work,
DRV_NAME " maximum events handled per interrupt");
module_param(rx_copybreak, int, 0);
MODULE_PARM_DESC(rx_copybreak,
DRV_NAME " copy breakpoint for copy-only-tiny-frames");
module_param(tx_start_pt, int, 0);
MODULE_PARM_DESC(tx_start_pt, DRV_NAME " transmit start point (0-3)");
module_param(pcnet32vlb, int, 0);
MODULE_PARM_DESC(pcnet32vlb, DRV_NAME " Vesa local bus (VLB) support (0/1)");
module_param_array(options, int, NULL, 0);
MODULE_PARM_DESC(options, DRV_NAME " initial option setting(s) (0-15)");
module_param_array(full_duplex, int, NULL, 0);
MODULE_PARM_DESC(full_duplex, DRV_NAME " full duplex setting(s) (1)");
/* Module Parameter for HomePNA cards added by Patrick Simmons, 2004 */
module_param_array(homepna, int, NULL, 0);
MODULE_PARM_DESC(homepna,
DRV_NAME
" mode for 79C978 cards (1 for HomePNA, 0 for Ethernet, default Ethernet");
MODULE_AUTHOR("Thomas Bogendoerfer");
MODULE_DESCRIPTION("Driver for PCnet32 and PCnetPCI based ethercards");
MODULE_LICENSE("GPL");
#define PCNET32_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
/*
2897 NETIF_MSG_DRV = 0x0001,
2898 NETIF_MSG_PROBE = 0x0002,
2899 NETIF_MSG_LINK = 0x0004,
2900 NETIF_MSG_TIMER = 0x0008,
2901 NETIF_MSG_IFDOWN = 0x0010,
2902 NETIF_MSG_IFUP = 0x0020,
2903 NETIF_MSG_RX_ERR = 0x0040,
2904 NETIF_MSG_TX_ERR = 0x0080,
2905 NETIF_MSG_TX_QUEUED = 0x0100,
2906 NETIF_MSG_INTR = 0x0200,
2907 NETIF_MSG_TX_DONE = 0x0400,
2908 NETIF_MSG_RX_STATUS = 0x0800,
2909 NETIF_MSG_PKTDATA = 0x1000,
2910 NETIF_MSG_HW = 0x2000,
2911 NETIF_MSG_WOL = 0x4000,
*/
/// PCNET32_MSG_DEFAULT = 0111
static int __init pcnet32_init_module(void)
{
printk(KERN_INFO "%s", version);
/// 如果没有设置debug,则使用默认的debug level
/*****
* pcnet32_dubug 和debug都是int型变量,表示消息级别,其中的某些使用的位,每一位对
* 应是否打印一种消息,在需要决定是否打印某种消息时,如果该位为1则打印,为0则不答应.
* netif_msg_init(debug, PCNET32_MSG_DEFAULT)是来初始化pcnet32_debug,
* 如果传入的debug小于0或者大于sizeof(u32)*8则返回PCNET32_MSG_DEFAULT(即默认的debug level),
* 如果debug = 0,返回0,其他情况返回 ( 1 << debug_value - 1 )
*/
pcnet32_debug = netif_msg_init(debug, PCNET32_MSG_DEFAULT);
////???????
if ((tx_start_pt >= 0) && (tx_start_pt <= 3))
tx_start = tx_start_pt;
/* find the PCI devices */
///注册PCI驱动,成功返回0,失败返回负值,pcnet32_have_pci表示当前系统存在PCI子系统(不一定存在驱动支持的网卡设备,因为注册驱动时是可以没有网卡设备的)
if (!pci_register_driver(&pcnet32_driver))
pcnet32_have_pci = 1;
/* should we find any remaining VLbus devices ? */
//// 不用
if (pcnet32vlb)
pcnet32_probe_vlbus(pcnet32_portlist);
/*
* cards_found定义是static int的全局变量(因为是static所以初始值为0,用来表示本驱
* 动探测到的网卡数量 (即本驱动控制的网卡的数量)
* pcnet32_probe_pci中调用的探测函数pcnet32_probe1,每完成对一个NIC的探测,都会
* 执行cards_found++ ,每次插入一个设备,如果PCI子系统发现网卡是本驱动支持的网卡
* 型号,就会调用一次pcnet32_probe_pci
* 下面的语句功能:探测到网卡,并且debug level设置了NET_IF_MSG_PROBE(探测消息)则打印cards found 消息
*/
if (cards_found && (pcnet32_debug & NETIF_MSG_PROBE))
printk(KERN_INFO PFX "%d cards_found.\n", cards_found);
return (pcnet32_have_pci + cards_found) ? 0 : -ENODEV;
}
////释放所有已经获得的资源,注销驱动
///资源主要是各种内存缓冲区,还有把驱动unregist
///因为单网卡,所以while循环是不需要的
static void __exit pcnet32_cleanup_module(void)
{
struct net_device *next_dev;
while (pcnet32_dev) {
struct pcnet32_private *lp = netdev_priv(pcnet32_dev);
next_dev = lp->next;
unregister_netdev(pcnet32_dev);
pcnet32_free_ring(pcnet32_dev);
release_region(pcnet32_dev->base_addr, PCNET32_TOTAL_SIZE);
pci_free_consistent(lp->pci_dev, sizeof(*lp->init_block),
lp->init_block, lp->init_dma_addr);
free_netdev(pcnet32_dev);
pcnet32_dev = next_dev;
}
if (pcnet32_have_pci)
pci_unregister_driver(&pcnet32_driver);
}
module_init(pcnet32_init_module);
module_exit(pcnet32_cleanup_module);
/*
* Local variables:
* c-indent-level: 4
* tab-width: 8
* End:
*/