Paddle1.8-Pytorch-API对照表

 环境:paddlepaddle1.8

Pytorch的API名称

Paddle的API名称

torch.abs

fluid.layers.abs(x, name=None)

torch.acos

fluid.layers.acos(x, name=None)

torch.add

fluid.layers.elementwise_add(x, y, axis=-1, act=None, name=None)

torch.allclose

fluid.layers.allclose

torch.arange

fluid.layers.range(start, end, step, dtype)

torch.argmax

fluid.layers.argmax

torch.argmin

fluid.layers.argmin

torch.argsort

fluid.layers.argsort(input, axis=-1, descending=False, name=None)

torch.as_strided

fluid.layers.strided_slice(input, axes, starts, ends, strides):

torch.asin

fluid.layers.asin(x, name=None)

torch.atan

fluid.layers.atan(x, name=None)

torch.cat

fluid.layers.concat(input, axis=0, name=None)

torch.ceil

fluid.layers.ceil

torch.chunk

fluid.layers.unstack(x, axis=0, num=None)

torch.cos

fluid.layers.cos

torch.cumsum

fluid.layers.cumsum(x, axis=None, exclusive=None, reverse=None)

torch.diag

fluid.layer.diag(diagonal)

torch.diag_embed

fluid.layer.diag_embed

torch.div

fluid.layers.elementwise_div(x, y, axis=-1, act=None, name=None)

torch.eq

fluid.layers.equal(x, y, cond=None)

torch.equal

fluid.layers.elementwise_equal(x, y, name=None)

torch.equal

fluid.layers.equal(x, y, cond=None)

torch.erf

fluid.layers.erf(x)

torch.exp

fluid.layers.exp(x, name=None)

torch.eye

fluid.layers.eye(num_rows, num_columns=None, batch_shape=None, dtype='float32')

torch.flatten

fluid.layers.flatten

torch.flip

fluid.layers.flip

torch.floor

fluid.layers.floor(x, name=None)

torch.fmod

fluid.layers.elementwise_mod(x, y, axis=-1, act=None, name=None)

torch.from_numpy

fluid.dygraph.to_variable(value, block=None, name=None)

torch.full

fluid.layers.full(shape, fill_value, out=None, dtype=None, device=None, stop_gradient=True, name=None)

torch.full_like

fluid.layers.full_like

torch.gather

fluid.layers.gather(input, axis, index, out=None, sparse_grad=False, name=None)

torch.ge

fluid.layers.greater_equal

torch.gt

fluid.layers.greater_than

torch.le

fluid.layers.less_equal

torch.linspace

fluid.layers.linspace(start, stop, num, dtype)

torch.log

fluid.layers.log(x, name=None)

torch.logical_not

fluid.layers.logical_not(x, out=None, name=None)

torch.logical_xor

fluid.layers.logical_xor(x, y, out=None, name=None)

torch.lt

fluid.layers.less_than

torch.masked_select

fluid.layers.masked_select

torch.matmul

fluid.layers.matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None)

torch.max

fluid.layers.max(input, axis=None, keepdim=False, out=None, name=None) -> (Tensor, LongTensor)

torch.mean

fluid.layers.reduce_mean(input, dim=None, keep_dim=False, name=None)

torch.min

fluid.layers.min

torch.mm

fluid.layers.mm

torch.mul

fluid.layers.mul

torch.mv

fluid.layers.matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None)

torch.ne

fluid.layers.not_equal

torch.nn.AdaptiveAvgPool2d

fluid.layers.adaptive_pool2d

torch.nn.AdaptiveAvgPool3d

fluid.layers.adaptive_pool3d

torch.nn.AdaptiveMaxPool2d

fluid.layers.adaptive_pool2d

torch.nn.AdaptiveMaxPool3d

fluid.layers.adaptive_pool3d

torch.nn.add_module

fluid.dygraph.Layer.add_sublayer(name, sublayer)

torch.nn.append

fluid.dygraph.LayerList.append(sublayer)

torch.nn.append

fluid.dygraph.ParameterList.append(parameter)

torch.nn.AvgPool2d

fluid.layers.pool2d(pool_type为'avg')

torch.nn.AvgPool3d

fluid.layers.pool3d(pool_type为'avg')

torch.nn.BatchNorm1d

fluid.layers.batch_norm(input, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, data_layout='NCHW', in_place=False, name=None, moving_mean_name=None, moving_variance_name=None, do_model_average_for_mean_and_var=False, use_global_stats=False)

torch.nn.BatchNorm2d

fluid.layers.batch_norm(input, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, data_layout='NCHW', in_place=False, name=None, moving_mean_name=None, moving_variance_name=None, do_model_average_for_mean_and_var=False, use_global_stats=False)

torch.nn.BatchNorm3d

fluid.layers.batch_norm(input, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, data_layout='NCHW', in_place=False, name=None, moving_mean_name=None, moving_variance_name=None, do_model_average_for_mean_and_var=False, use_global_stats=False)

torch.nn.Bilinear

fluid.layers.bilinear_tensor_product(x, y, size, act=None, name=None, param_attr=None, bias_attr=None)

torch.nn.ConstantPad1d

fluid.layers.pad

torch.nn.ConstantPad2d

fluid.layers.pad / fluid.layers.pad2d

torch.nn.ConstantPad3d

fluid.layers.pad

torch.nn.Conv2d

fluid.dygraph.Conv2D

torch.nn.Conv3d

fluid.dygraph.Conv3D

torch.nn.ConvTranspose2d

fluid.layers.conv2d_transpose

torch.nn.ConvTranspose3d

fluid.layers.conv3d_transpose

torch.nn.double

fluid.layers.cast(x, dtype)

torch.nn.Dropout

fluid.layers.dropout(x, dropout_prob, is_test=False, seed=None, name=None, dropout_implementation='downgrade_in_infer')

torch.nn.ELU

fluid.layers.elu(x, alpha=1.0, name=None)

torch.nn.Embedding

fluid.dygraph.Embedding

torch.nn.eval

fluid.dygraph.Layer.eval()

torch.nn.float

fluid.layers.cast(x, dtype)

torch.nn.Fold

fluid.layers.unfold

torch.nn.functional.adaptive_avg_pool2d

fluid.layers.adaptive_pool2d

torch.nn.functional.adaptive_avg_pool3d

fluid.layers.adaptive_pool3d

torch.nn.functional.adaptive_max_pool2d

fluid.layers.adaptive_pool2d

torch.nn.functional.adaptive_max_pool3d

fluid.layers.adaptive_pool3d

torch.nn.functional.affine_grid

fluid.layers.affine_grid

torch.nn.functional.avg_pool2d

fluid.layers.pool2d(input, pool_size=-1, pool_type="max", pool_stride=1, pool_padding=0, global_pooling=False, use_cudnn=True, ceil_mode=False, name=None, exclusive=True, data_format="NCHW")设置pool_type="avg"

torch.nn.functional.avg_pool3d

fluid.layers.pool3d(input, pool_size=-1, pool_type="max", pool_stride=1, pool_padding=0, global_pooling=False, use_cudnn=True, ceil_mode=False, name=None, exclusive=True, data_format="NCDHW")设置pool_type="avg"

torch.nn.functional.cross_entropy

fluid.layers.softmax_with_cross_entropy

torch.nn.functional.ctc_loss

fluid.layers.warpctc

torch.nn.functional.elu

fluid.layers.elu

torch.nn.functional.embedding

fluid.embedding

torch.nn.functional.embedding_bag

fluid.contrib.fused_embedding_seq_pool

torch.nn.functional.glu

fluid.nets.glu(input, dim=-1)

torch.nn.functional.grid_sample

fluid.layers.grid_sampler

torch.nn.functional.hardshrink

fluid.layers.hard_shrink

torch.nn.functional.interpolate

fluid.layers.interpolate

torch.nn.functional.kl_div

fluid.layers.kldiv_loss

torch.nn.functional.leaky_relu

fluid.layers.leaky_relu

torch.nn.functional.logsigmoid

fluid.layers.logsigmoid

torch.nn.functional.margin_ranking_loss

fluid.layers.margin_rank_loss(label, left, right, margin=0.1, name=None)

torch.nn.functional.max_pool2d

fluid.layers.pool2d(input, pool_size=-1, pool_type="max", pool_stride=1, pool_padding=0, global_pooling=False, use_cudnn=True, ceil_mode=False, name=None, exclusive=True, data_format="NCHW")设置pool_type="max"

torch.nn.functional.max_pool3d

fluid.layers.pool3d(input, pool_size=-1, pool_type="max", pool_stride=1, pool_padding=0, global_pooling=False, use_cudnn=True, ceil_mode=False, name=None, exclusive=True, data_format="NCDHW")设置pool_type="max"

torch.nn.functional.mse_loss

fluid.layers.mse_loss(input, label)

torch.nn.functional.one_hot

fluid.one_hot

torch.nn.functional.pad

fluid.layers.pad(x, paddings, pad_value=0.0, name=None)

torch.nn.functional.pixel_shuffle

fluid.layers.pixel_shuffle(x, upscale_factor)

torch.nn.functional.prelu

fluid.layers.prelu(x, mode, param_attr=None, name=None)

torch.nn.functional.relu

fluid.layers.relu(x, name=None)

torch.nn.functional.relu6

fluid.layers.relu6

torch.nn.functional.selu

fluid.layers.selu

torch.nn.functional.sigmoid

fluid.layers.sigmoid

torch.nn.functional.smooth_l1_loss

fluid.layers.smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None)

torch.nn.functional.softmax

fluid.layers.softmax

torch.nn.functional.softplus

fluid.layers.softplus

torch.nn.functional.softshrink

fluid.layers.softshrink

torch.nn.functional.softsign

fluid.layers.softsign

torch.nn.functional.tanh

fluid.layers.tanh

torch.nn.functional.tanhshrink

fluid.layers.tanh_shrink

torch.nn.functional.threshold

fluid.layers.thresholded_relu

torch.nn.functional.unfold

fluid.layers.unfold(x, kernel_size, strides=1, paddings=0, dilation=1, name=None)

torch.nn.GroupNorm

fluid.layers.group_norm(input, groups, epsilon=1e-05, param_attr=None, bias_attr=None, act=None, data_layout='NCHW', name=None)

torch.nn.GRU

fluid.layers.dynamic_gru

torch.nn.GRUCell

fluid.layers.GRUCell

torch.nn.half

fluid.layers.cast(x, dtype)

torch.nn.Hardshrink

fluid.layers.hard_shrink(x, threshold=None)

torch.nn.init.constant_

fluid.initializer.ConstantInitializer(value=0.0, force_cpu=False)

torch.nn.init.eye_

fluid.layers.eye(num_rows, num_columns=None, batch_shape=None, dtype='float32')

torch.nn.init.kaiming_normal_

fluid.initializer.MSRAInitializer(uniform=True, fan_in=None, seed=0)

torch.nn.init.kaiming_uniform_

fluid.initializer.MSRAInitializer(uniform=True, fan_in=None, seed=0)

torch.nn.init.normal_

fluid.initializer.NormalInitializer(loc=0.0, scale=1.0, seed=0)

torch.nn.init.ones_

fluid.layers.ones(shape, dtype, force_cpu=False)

torch.nn.init.uniform_

fluid.initializer.UniformInitializer(low=-1.0, high=1.0, seed=0)

torch.nn.init.xavier_normal_

fluid.initializer.XavierInitializer(uniform=True, fan_in=None, fan_out=None, seed=0

torch.nn.init.xavier_uniform_

fluid.initializer.XavierInitializer(uniform=True, fan_in=None, fan_out=None, seed=0

torch.nn.init.zeros_

fluid.layers.zeros(shape, dtype, force_cpu=False)

torch.nn.InstanceNorm1d

fluid.layers.instance_norm

torch.nn.InstanceNorm2d

fluid.layers.instance_norm

torch.nn.InstanceNorm3d

fluid.layers.instance_norm

torch.nn.LayerNorm

fluid.layers.layer_norm(input, scale=True, shift=True, begin_norm_axis=1, epsilon=1e-05, param_attr=None, bias_attr=None, act=None, name=None) 

torch.nn.LeakyReLU

fluid.layers.leaky_relu(x, alpha=0.02, name=None)

torch.nn.Linear

fluid.dygraph.Linear(input_dim, output_dim, param_attr=None, bias_attr=None, act=None, dtype='float32')

torch.nn.load_state_dict

fluid.dygraph.Layer.set_dict(stat_dict, include_sublayers=True)

torch.nn.LogSigmoid

fluid.layers.logsigmoid(x, name=None)

torch.nn.LSTM

fluid.layers.lstm

torch.nn.LSTMCell

fluid.layers.LSTMCell

torch.nn.MarginRankingLoss

fluid.layers.margin_rank_loss(label, left, right, margin=0.1, name=None)

torch.nn.MaxPool2d

fluid.layers.pool2d(pool_type为'max')

torch.nn.MaxPool3d

fluid.layers.pool3d(pool_type为'max')

torch.nn.Module

fluid.dygraph.Layer()

torch.nn.modules

fluid.dygraph.Layer.sublayers(include_sublayers=True)

torch.nn.MSELoss

fluid.dygraph.MSELoss(input, label)

torch.nn.MultiheadAttention

fluid.nets.scaled_dot_product_attention

torch.nn.named_modules

fluid.dygraph.Layer.named_sublayers(prefix='',include_sublayers=True,include_self=False,layers_set=None)

torch.nn.named_parameters

fluid.dygraph.Layer.named_parameters(prefix='', include_sublayers=True)

torch.nn.ParameterList

fluid.dygraph.ParameterList

torch.nn.parameters

fluid.dygraph.Layer.parameters(include_sublayers=True)

torch.nn.PixelShuffle

fluid.layers.pixel_shuffle

torch.nn.PReLU

fluid.layers.prelu
fluid.dygraph.Prelu

torch.nn.ReflectionPad2d

fluid.layers.pad2d

torch.nn.register_parameter

fluid.dygraph.Layer.add_parameter(name, parameter)

torch.nn.ReLU

fluid.layers.relu(x, name=None)

torch.nn.ReLU6

fluid.layers.relu6

torch.nn.ReplicationPad2d

fluid.layers.pad2d

torch.nn.requires_grad_

fluid.Variable().stop_gradient

torch.nn.RNN

fluid.layers.rnn

torch.nn.RNNCell

fluid.layers.RNNCell

torch.nn.SELU

fluid.layers.selu

torch.nn.Sequential

fluid.dygraph.Sequential(*layers)

torch.nn.Sigmoid

fluid.layers.sigmoid(x, name=None)

torch.nn.SmoothL1Loss

fluid.layers.smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None)

torch.nn.Softmax

fluid.layers.softmax(input, use_cudnn=False, name=None, axis=-1)

torch.nn.Softplus

fluid.layers.softplus

torch.nn.Softshrink

fluid.layers.softshrink(x, alpha=None)

torch.nn.Softsign

fluid.layers.softsign(x, name=None)

torch.nn.state_dict

fluid.dygraph.Layer.state_dict

torch.nn.Tanh

fluid.layers.tanh(x, name=None)

torch.nn.Tanhshrink

fluid.layers.tanh_shrin

torch.nn.Threshold

fluid.layers.thresholded_relu(x, threshold=None)

torch.nn.train

fluid.dygraph.Layer.train()

torch.nn.type

fluid.layers.cast(x, dtype)

torch.nn.UpsamplingBilinear2d

fluid.layers.resize_bilinear

torch.nn.UpsamplingNearest2d

fluid.layers.resize_nearest

torch.nn.zero_grad

fluid.dygraph.Layer.clear_gradients()

torch.nn.ZeroPad2d

fluid.layers.pad / fluid.layers.pad2d

torch.norm

fluid.layers.l2_normalize

torch.normal

fluid.layers.gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32')

torch.numel

fluid.layers.size(input)

torch.ones

fluid.layers.ones

torch.ones_like

fluid.layers.ones_like

torch.pow

fluid.layers.pow

torch.prod

fluid.layers.reduce_prod(input, dim=None, keep_dim=False, name=None)

torch.rand_like

fluid.layers.gaussian_random_batch_size_like(input, shape, input_dim_idx=0, output_dim_idx=0, mean=0.0, std=1.0, seed=0, dtype='float32')[

torch.randint

fluid.layers.randint(low, high=None, shape=None, out=None, dtype=None, device=None, stop_gradient=False, seed=0, name=None)

torch.randn

fluid.layers.randn

torch.randn_like

fluid.layers.gaussian_random_batch_size_like

torch.randperm

fluid.layers.randperm

torch.range

fluid.layers.range

torch.reciprocal

fluid.layers.reciprocal(x, name=None)

torch.reshape

fluid.layers.reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None)

torch.roll

fluid.layers.roll

torch.round

fluid.layers.round(x, name=None)

torch.rsqrt

fluid.layers.rsqrt(x, name=None)

torch.seed

fluid.Program.random_seed

torch.set_num_interop_threads

fluid.ExecutionStrategy.num_threads

torch.set_num_threads

fluid.cpu_places(device_count=None)

torch.sigmoid

fluid.layers.sigmoid(x, name=None)

torch.sign

fluid.layers.sign(x)

torch.sin

fluid.layers.sin(x, name=None)

torch.split

fluid.layers.split(input, num_or_sections, dim=-1, name=None)

torch.sqrt

fluid.layers.squeeze(input, axes, name=None)

torch.squeeze

fluid.layers.squeeze(input, axes, name=None)

torch.stack

fluid.layers.stack(x, axis=0)

torch.std_mean

fluid.layers.mean

torch.sum

fluid.layers.sum(x)

torch.sum

fluid.layers.elementwise_add(x, y, axis=-1, act=None, name=None)

torch.tan

fluid.layers.tanh(x, name=None)

torch.tanh

fluid.layers.tanh(x, name=None)

torch.Tensor.abs

fluid.layers.abs(x, name=None)

torch.Tensor.abs_

fluid.layers.abs(x, name=None)

torch.Tensor.acos

fluid.layers.acos(x, name=None)

torch.Tensor.acos_

fluid.layers.acos(x, name=None)

torch.Tensor.add_

fluid.layers.elementwise_add(x, y, axis=-1, act=None, name=None)

torch.Tensor.asin_

fluid.layers.asin(x, name=None)

torch.Tensor.atan_

fluid.layers.atan(x, name=None)

torch.Tensor.backward

fluid.gradients(targets, inputs, target_gradients=None, no_grad_set=None)paddle 目标变量和起始

torch.Tensor.bfloat16

fluid.layers.cast(x, float16)

torch.Tensor.bmm

fluid.layers.matmul

torch.Tensor.bool

fluid.layers.cast(x, bool)

torch.Tensor.byte

fluid.layers.cast(x, uint8)

torch.Tensor.ceil

fluid.layers.ceil

torch.Tensor.clamp

fluid.layers.clip

torch.Tensor.clamp_

fluid.layers.clip(x, min, max, name=None)

torch.Tensor.clone

fluid.layers.assign(input, output=None)

torch.Tensor.cos

fluid.layers.cos

torch.Tensor.cumsum

fluid.layers.cumsum

torch.Tensor.dequantize

fluid.layers.dequantize()

torch.Tensor.diag

fluid.layers.diag

torch.Tensor.div

fluid.layers.elementwise_div(x, y, axis=-1, act=None, name=None)

torch.Tensor.eq

fluid.layers.equal

torch.Tensor.eq_

fluid.layers.equal(x, y, cond=None)

torch.Tensor.exp

fluid.layers.exp(x, name=None)

torch.Tensor.exp_

fluid.layers.exp(x, name=None)

torch.Tensor.expand

fluid.layers.expand(x, expand_times, name=None)

torch.Tensor.expand_as

fluid.layers.expand_as(x, target_tensor, name=None)

torch.Tensor.fill_diagonal_

fluid.layers.diag(diagonal)

torch.Tensor.flatten

fluid.layers.flatten

torch.Tensor.flip

fluid.layers.reverse

torch.Tensor.floor

fluid.layers.floor

torch.Tensor.floor_

fluid.layers.floor(x, name=None)

torch.Tensor.fmod_

fluid.layers.elementwise_mod(x, y, axis=-1, act=None, name=None)

torch.Tensor.gather

fluid.layers.gather(input, index, overwrite=True)

torch.Tensor.ge

fluid.layers.greater_equal(x, y, cond=None)

torch.Tensor.ge_

fluid.layers.greater_equal(x, y, cond=None)

torch.Tensor.gt

fluid.layers.greater_than(x, y, cond=None)

torch.Tensor.gt_

fluid.layers.greater_than(x, y, cond=None)

torch.Tensor.hardshrink

fluid.layers.hard_shrink(x, threshold=None)

torch.Tensor.index_select

fluid.layers.multiplex(inputs, index)

torch.Tensor.int

fluid.layers.cast

torch.Tensor.le

fluid.layers.less_equal(x, y, cond=None)

torch.Tensor.le_

fluid.layers.less_equal(x, y, cond=None)

torch.Tensor.log

fluid.layers.log(x, name=None)

torch.Tensor.log_

fluid.layers.log(x, name=None)

torch.Tensor.logical_not

fluid.layers.logical_not(x, out=None, name=None)

torch.Tensor.logical_not_

fluid.layers.logical_not(x, out=None, name=None)

torch.Tensor.logical_xor

fluid.layers.logical_xor(x, y, out=None, name=None)

torch.Tensor.logical_xor_

fluid.layers.logical_xor(x, y, out=None, name=None)

torch.Tensor.lt

fluid.layers.less_than(x, y, cond=None)

torch.Tensor.lt_

fluid.layers.less_than(x, y, force_cpu=None, cond=None)

torch.Tensor.masked_select

fluid.layers.masked_select(input, mask)

torch.Tensor.matmul

fluid.layers.matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None)

torch.Tensor.matrix_power

fluid.layers.pow(x, factor=1.0, name=None)

torch.Tensor.max

fluid.layers.reduce_max(input, dim=None, keep_dim=False, name=None)

torch.Tensor.mean

fluid.layers.mean(x, name=None)

torch.Tensor.min

fluid.layers.reduce_min(input, dim=None, keep_dim=False, name=None)

torch.Tensor.mul

fluid.layers.mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None)

torch.Tensor.mul_

fluid.layers.mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None)

torch.Tensor.multinomial

fluid.layers.sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32')

torch.Tensor.mv

fluid.layers.mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None)

torch.Tensor.narrow_copy

fluid.layers.slice(input, axes, starts, ends)

torch.Tensor.ndimension

fluid.layers.rank(input)

torch.Tensor.ne_

fluid.layers.not_equal(x, y, cond=None)

torch.Tensor.normal_

fluid.layers.Normal(loc, scale)

torch.Tensor.numel

fluid.layers.size(input)

torch.Tensor.permute

fluid.layers.transpose(x, perm, name=None)

torch.Tensor.pow

fluid.layers.pow(x, factor=1.0, name=None)

torch.Tensor.pow_

fluid.layers.pow(x, factor=1.0, name=None)

torch.Tensor.prod

fluid.layers.reduce_prod(input, dim=None, keep_dim=False, name=None)[

torch.Tensor.put_

fluid.layers.scatter(input, index, updates, name=None, overwrite=True)[源代码]

torch.Tensor.random_

fluid.layers.uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0)

torch.Tensor.reciprocal

fluid.layers.reciprocal(x, name=None)

torch.Tensor.reciprocal_

fluid.layers.reciprocal(x, name=None)

torch.Tensor.remainder_

fluid.layers.elementwise_mod(x, y, axis=-1, act=None, name=None)

torch.Tensor.requires_grad

fluid.Variable.stop_gradient(属性)

torch.Tensor.requires_grad_

fluid.Variable.stop_gradient(属性)

torch.Tensor.reshape

fluid.layers.reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None)

torch.Tensor.reshape_as

fluid.layers.reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None)

torch.Tensor.resize_as_

fluid.layers.reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None)

torch.Tensor.round

fluid.layers.round(x, name=None)

torch.Tensor.round_

fluid.layers.round(x, name=None)

torch.Tensor.rsqrt

fluid.layers.rsqrt(x, name=None)

torch.Tensor.rsqrt_

fluid.layers.rsqrt(x, name=None)

torch.Tensor.scatter

fluid.layers.scatter(input, index, updates, name=None, overwrite=True)

torch.Tensor.scatter_

fluid.layers.scatter(input, index, updates, name=None, overwrite=True)

torch.Tensor.scatter_add

fluid.layers.scatter(input, index, updates, name=None, overwrite=True)

torch.Tensor.scatter_add_

fluid.layers.scatter(input, index, updates, name=None, overwrite=True)

torch.Tensor.select

fluid.layers.slice

torch.Tensor.short

fluid.layers.cast(x, dtype)

torch.Tensor.sigmoid

fluid.layers.sigmoid(x, name=None)

torch.Tensor.sigmoid_

fluid.layers.sigmoid(x, name=None)

torch.Tensor.sign

fluid.layers.sign(x)

torch.Tensor.sign_

fluid.layers.sign(x)

torch.Tensor.sin

fluid.layers.sin(x, name=None)

torch.Tensor.sin_

fluid.layers.sin(x, name=None)

torch.Tensor.split

fluid.layers.split(input, num_or_sections, dim=-1, name=None)

torch.Tensor.sqrt

fluid.layers.sqrt(x, name=None)

torch.Tensor.sqrt_

fluid.layers.sqrt(x, name=None)

torch.Tensor.squeeze

fluid.layers.squeeze(input, axes, name=None)

torch.Tensor.squeeze_

fluid.layers.squeeze(input, axes, name=None)

torch.Tensor.sub

fluid.layers.elementwise_sub(x, y, axis=-1, act=None, name=None)

torch.Tensor.sub_

fluid.layers.elementwise_sub(x, y, axis=-1, act=None, name=None)

torch.Tensor.sum

fluid.layers.sum(x)

torch.Tensor.t_

fluid.layers.transpose(x, perm, name=None)

torch.Tensor.tanh

fluid.layers.tanh(x, name=None)

torch.Tensor.tanh_

fluid.layers.tanh(x, name=None)

torch.Tensor.to

fluid.layers.cast(x, dtype)

torch.Tensor.topk

fluid.layers.topk(input, k, name=None)

torch.Tensor.transpose

fluid.layers.transpose(x, perm, name=None)

torch.Tensor.transpose_

fluid.layers.transpose(x, perm, name=None)

torch.Tensor.trunc

fluid.layers.floor(x, name=None)

torch.Tensor.unbind

fluid.layers.unstack(x, axis=0, num=None)

torch.Tensor.unique

fluid.layers.unique

torch.Tensor.unsqueeze

fluid.layers.unsqueeze

torch.Tensor.unsqueeze_

fluid.layers.unsqueeze(input, axes, name=None)

torch.Tensor.view

fluid.layers.reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None)

torch.Tensor.where

fluid.layers.where

torch.Tensor.zero_

fluid.layers.zeros(shape, dtype, force_cpu=False)

torch.topk

fluid.layers.topk(input, k, name=None)

torch.transpose

fluid.layers.transpose(x, perm, name=None)

torch.tril

fluid.layers.tril

torch.triu

fluid.layers.triu

torch.unique

fluid.layers.unique(x, dtype='int32')

torch.unsqueeze

fluid.layers.unsqueeze(input, axes, name=None)

torch.var_mean

fluid.layers.mean

torch.where

fluid.layers.where(condition)

torch.zeros

fluid.layers.zeros(shape, dtype, force_cpu=False)

torch.zeros_like

fluid.layers.zeros_like(x, out=None)

torch.utils.data.dataloader.default_collate

fluid.io.default_collate_fn

torch.optim.lr_scheduler.StepLR

fluid.dygraph.StepDecay

你可能感兴趣的:(百度飞桨,深度学习,pytorch,深度学习,人工智能,paddlepaddle)