- 【深度学习解惑】如果用RNN实现情感分析或文本分类,你会如何设计数据输入?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习rnn分类人工智能机器学习神经网络
以下是用RNN实现情感分析/文本分类时数据输入设计的完整技术方案:1.引言与背景介绍情感分析/文本分类是NLP的核心任务,目标是将文本映射到预定义类别(如正面/负面情感)。RNN因其处理序列数据的天然优势成为主流方案。核心挑战在于如何将非结构化的文本数据转换为适合RNN处理的数值化序列输入。2.原理解释文本到向量的转换流程:原始文本分词建立词汇表词索引映射词嵌入层序列向量关键数学表示:词嵌入表示:
- 大语言模型(LLM)量化基础知识(一)
-派神-
RAGNLPChatGPT语言模型人工智能自然语言处理
承接各类AI相关应用开发项目(包括但不限于大模型微调、RAG、AI智能体、NLP、机器学习算法、运筹优化算法、数据分析EDA等)!!!有意愿请私信!!!随着大型语言模型(LLM)的参数数量的增长,与其支持硬件(加速器内存)增长速度之间的差距越来越大,如下图所示:上图显示,从2017年到2022年,语言模型的大小显著增加:2017年:Transformer模型(0.05B参数)2018年:GPT(0
- 对话云蝠智能:大模型如何让企业呼叫系统从 “成本中心” 变身 “价值枢纽”?
MARS_AI_
人工智能自然语言处理信息与通信交互
在人工智能重塑企业服务的浪潮中,云蝠智能(南京星蝠科技有限公司旗下品牌)以深厚的技术积累和行业实践,逐步成长为国内智能外呼领域的标杆企业。其发展路径揭示了技术自主创新与场景深度结合的必然性。一、技术架构:全栈自研奠定领先基础云蝠智能的核心竞争力源于其全链路自研技术体系。该架构覆盖语音识别(ASR)、自然语言处理(NLP)、语音合成(TTS)及软交换六大层级,实现从基础设施到操作层的闭环设计。这一分
- Jenkins JNLP与SSH节点连接方式对比及连接断开问题解决方案
tianyuanwo
devopsjenkinsssh运维
一、JNLPvsSSH连接方式优缺点对比对比维度JNLP(JavaWebStart)SSH(SecureShell)核心原理代理节点主动连接Jenkins主节点,通过加密通道通信,支持动态资源分配。Jenkins通过SSH协议远程登录代理节点执行命令,需预先配置SSH服务。适用场景容器化环境(如Kubernetes)、需要跨平台或动态扩缩容的场景。传统物理机/虚拟机、静态节点或简单命令执行场景。安
- 用AI写一个自动记录手机支付记录的小插件
教程python
要实现一个自动记录手机支付记录的小插件,核心是利用AI技术解析支付通知短信/通知栏消息。以下是通过训练让AI写代码实现方案:基础方案:手动输入+AI分类(无需权限)#使用Python+Tkinter(界面)+简易NLP分类importtkinterastkfromdatetimeimportdatetimeimportreclassPaymentTracker:def__init__(self):
- AI 销售系统:重塑销售格局的科技利器
小柔说科技
人工智能科技java
在数字化浪潮汹涌澎湃的当下,人工智能(AI)正以前所未有的速度渗透到各个行业,销售领域也不例外。AI销售系统作为一种融合了先进人工智能技术的创新工具,正逐渐成为企业提升销售效率、优化客户体验、增强市场竞争力的关键因素。一、AI销售系统的概念与核心技术AI销售系统是基于人工智能技术构建的一套综合性销售管理平台,它整合了自然语言处理(NLP)、机器学习(ML)、数据分析、预测建模等多种核心技术。通过这
- 【炼丹炉】Conda环境离线迁移
黑白象
炼丹笔记自然语言处理pippythonanacondalinux
1.背景笔者所在公司最近要在局域网内部署NLP算法模型,由于需求方对数据安全有严格要求,新服务器所在局域网不能直接访问Internet,因此需要将模型所需的运行环境离线迁移到新服务器中。2.方案2.1conda-packconda-pack是一个命令行工具,用于打包conda环境。该命令会将坏境中安装的软件包的二进制文件进行打包。注:本方法不需要下载安装包,因此,conda-pack需要指定平台和
- NLP市场规模将破千千亿,哪些岗位会成为新风口?
duolapig
人工智能
近年来,自然语言处理(NLP)技术在全球范围内掀起了一场“语言革命”。从智能客服到机器翻译,从情感分析到内容生成,NLP正以惊人的速度重塑人类与机器的交互方式。艾媒咨询数据显示,2023年中国NLP市场规模已达660亿元,预计2027年将突破千亿大关。这一数字背后,不仅是技术迭代的加速,更是一场深刻的人才需求变革。在AI大模型浪潮的推动下,新的职业风口正在形成,而这场变革的核心逻辑,是技术与产业融
- RNN、LSTM、GRU详解
昔颜1121
人工智能rnnpython
RNN、LSTM、GRU详解在深度学习领域,序列数据(如语音识别、机器翻译、文本生成等)广泛应用于自然语言处理(NLP)、时间序列预测、语音和视频处理等任务中。针对序列数据,循环神经网络(RNN,RecurrentNeuralNetwork)及其改进版本——长短时记忆网络(LSTM,LongShort-TermMemory)和门控循环单元(GRU,GatedRecurrentUnit)成为处理时序
- 小白的进阶之路系列之十六----人工智能从初步到精通pytorch综合运用的讲解第九部分
金沙阳
人工智能pytorchpython
从零开始学习NLP在这个由三部分组成的系列中,你将构建并训练一个基本的字符级循环神经网络(RNN)来对单词进行分类。你将学习如何从零开始构建循环神经网络NLP的基本数据处理技术如何训练RNN以识别单词的语言来源。从零开始学自然语言处理:使用字符级RNN对名字进行分类我们将构建并训练一个基本的字符级循环神经网络(RNN)来对单词进行分类。展示了如何预处理数据以建模NLP。特别是,这些教程展示了如何以
- 使用Hugging Face的BGE模型进行文本嵌入
lirxx
人工智能langchain
在文本嵌入领域,BGE(BeijingAcademyofArtificialIntelligenceEmbeddings)模型是开源界的佼佼者。由北京智源人工智能研究院(BAAI)开发,BGE模型以其高效的嵌入性能和开放性获得了广泛的认可。本文将通过HuggingFace平台展示如何使用BGE模型进行文本嵌入。技术背景介绍文本嵌入是将文本数据转换为可计算向量的过程,这在自然语言处理(NLP)中具有
- 第8章:智能菜谱生成器——语言模型如何解析烹饪秘方
白嫖不白嫖
深度求索-DeepSeek语言模型人工智能自然语言处理
第8章:智能菜谱生成器——语言模型如何解析烹饪秘方从语义理解到操作执行的完整技术解密工业案例背景:法国里昂的Bocused’Or国际烹饪大赛选手手册中记载这样一道经典指令:“将酱汁熬煮至Nappé状态(即勺子划过痕迹缓慢回填)”。当传统NLP系统将其简单译为"煮浓",新一代Transformer模型却精准解析出粘度为1500-2000cP的物性指标,并据此生成控温方案。这背后的核心技术便是基于烹饪
- WebRTC 语音激活检测(VAD)算法
u013250861
Audiowebrtc算法语音识别
语音激活检测最早应用于电话传输和检测系统当中,用于通信信道的时间分配,提高传输线路的利用效率。激活检测属于语音处理系统的前端操作,在语音检测领域意义重大。但是目前的语音激活检测,尤其是检测人声开始和结束的端点始终是属于技术难点,各家公司始终处于能判断,但是不敢保证判别准确性的阶段。通常搭建机器人聊天系统主要包括以下三个方面:语音转文字(ASR/STT)语义内容(NLU/NLP)文字转语音(TTS)
- Java企业技术趋势分析:AI驱动下的Spring AI、LangChain4j与RAG系统架构
在未来等你
Java场景面试宝典AI技术编程JavaSpring
【Java企业技术趋势分析:AI驱动下的SpringAI、LangChain4j与RAG系统架构】开篇在当今快速发展的技术环境中,人工智能(AI)正在以前所未有的速度重塑企业的技术架构和业务流程。Java作为企业级开发的主流语言之一,在AI应用落地方面也迎来了新的机遇和挑战。从自然语言处理(NLP)到机器学习(ML),再到生成式AI(GenerativeAI),Java开发者正在积极拥抱这些新兴技
- 【资源共享】eBook分享大集合
天堂的鸽子
杂七杂八资源分享
文章目录eBook分享大集合服务器系统类(9)机器学习类(17)NLP算法类(19)网络类(6)程序语言类C/C++语言(8)Python语言(14)Java语言(14)PHP语言(4)C#/.NET语言(21)Web技术(12)数据库类Oracle(5)MySQL(8)SQLServer(10)大数据类(11)其他系列IT思维类(15)架构设计类(11)敏捷开发类(21)面试精华文档Java(3
- 预训练目标:BERT 更适配 “理解类” 任务
在NLP任务中,更倾向于用BERT而非GPT做预训练,核心原因与两者的模型设计、任务适配性、资源成本有关,具体可从以下维度拆解:一、预训练目标:BERT更适配“理解类”任务BERT的双向预训练目标:通过掩码语言模型(MLM)和下一句预测(NSP),强制模型学习上下文的双向语义依赖(比如用“[MASK]是水果”的前后文猜“苹果”),天生适合文本理解、分类、问答等任务。GPT的单向预训练目标:基于自回
- PyABSA 入门指南:基于深度学习的情感分析工具包
是纯一呀
DeepLearningAINLP深度学习人工智能NLP
在自然语言处理(NLP)领域,情感分析(SentimentAnalysis)一直是热门任务之一。而基于方面的情感分析(Aspect-BasedSentimentAnalysis,ABSA),则是更细粒度的分析方式——不仅判断正负情绪,还识别情绪对象(方面)和具体情感极性(如好/差)。什么是PyABSA?PyABSA(PythonAspect-BasedSentimentAnalysis)是一个专为
- AI智能时代SEO优化,AISEO-人工智能搜索引擎优化
weixin_ggwwsscc
人工智能搜索引擎deepseekAIseo
AI驱动的关键词精准匹配与语义理解传统的关键词排名规则主要依赖于关键词的字面匹配,即网站内容中出现的关键词与用户搜索词完全一致或高度相似时,才有可能获得较好的排名。然而,随着AI技术在搜索引擎中的广泛应用,这一局面正在发生深刻改变。如今的搜索引擎借助自然语言处理(NLP)和机器学习算法,能够深入理解用户搜索词背后的语义和意图,实现更精准的内容匹配。AI智能时代SEO优化,AISEO-人工智能搜索引
- 大语言模型应用指南:多模态大语言模型
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:多模态大语言模型作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:多模态大语言模型(MMLM),多媒体数据处理,自然语言理解,图像文本生成,应用场景探索1.背景介绍1.1问题的由来随着人工智能技术的迅速发展,特别是自然语言处理(NLP)领域的突破,大型语言模型(LargeLanguageModels,LLMs)成为研究热点。
- Milvus 向量数据库详解与实践指南
JJJ@666
基础知识(人工智能AI)milvus向量数据库图像检索推荐系统
一、Milvus核心介绍1.什么是Milvus?Milvus是一款开源、高性能、可扩展的向量数据库,专门为海量向量数据的存储、索引和检索而设计。它支持近似最近邻搜索(ANN),适用于图像检索、自然语言处理(NLP)、推荐系统、语义搜索、智能问答、多模态数据处理等AI应用场景。它能够高效处理:嵌入向量(Embeddings)特征向量(FeatureVectors)任何高维数值向量2.核心特性特性说明
- 【AI论文】MultiFinBen:一个用于金融大语言模型评估的多语言、多模态且具备难度感知能力的基准测试集
东临碣石82
人工智能金融语言模型
摘要:近期,大型语言模型(LLMs)的进展加速了金融自然语言处理(NLP)及其应用的发展,然而现有的基准测试仍局限于单语言和单模态场景,往往过度依赖简单任务,无法反映现实世界金融交流的复杂性。我们推出了MultiFinBen,这是首个针对全球金融领域定制的多语言、多模态基准测试集,用于在特定领域任务上跨模态(文本、视觉、音频)和语言环境(单语言、双语、多语言)对大型语言模型进行评估。我们引入了两个
- 小白的进阶之路系列之十七----人工智能从初步到精通pytorch综合运用的讲解第十部分
金沙阳
人工智能pytorchpython
NLP从零开始:使用字符级RNN生成姓名这是我们“NLP从零开始”系列三部分教程中的第二部分。在第一个教程中,我们使用了RNN将姓名分类到其语言来源。这次我们将反过来,从语言生成姓名。>pythonsample.pyRussianRUSRovakovUantovShavakov>pythonsample.pyGermanGERGerrenErengRosher>pythonsample.pySpa
- 6月19日复盘
四万二千
人工智能transformer
6月19日复盘二、分词与词向量分词和词向量是NLP的基础技术。1.分词分词是将连续的文本分割成独立的词汇单元(tokens)的过程。这些单元可以是单词、符号或子词。1.1中文特性中文句子由连续的汉字组成,没有明显的词边界:词与词之间没有分隔符英文:Ilovenaturallanguageprocessing.中文:我喜欢自然语言处理。词是最基本的语义单元。为了处理文本信息,须将连续的序列分割成有意
- 程序代码篇---ESP32-S3小智固件
Atticus-Orion
深度学习篇程序代码篇上位机知识篇AIEsp32-S3小智
Q1:ESP32-S3小智语音对话系统的整体架构是怎样的?A1:该系统采用“语音采集→唤醒词检测→ASR→NLP→TTS→语音播放”的流水线架构:硬件层:ESP32-S3芯片+麦克风阵列(如INMP441)+扬声器(如MAX98357A)。驱动层:ESP-IDF或Arduino框架提供的I2S、ADC、DAC驱动。算法层:唤醒词检测:基于MicroML(如TensorFlowLiteMicro)。
- NLPIR智能语义:大数据精准挖掘是信息化发展趋势
weixin_33778544
大数据数据库人工智能
随着信息技术的高速发展、数据库管理系统的广泛应用,人们积累的数据量急剧增长,大量的信息给人们带来方便的同时,也带来了诸如:信息过量难以消化,信息真假难以辨识,信息安全难以保证,信息形式不一致难以统一处理等问题。如何从海量的数据中提取有用的知识成为当务之急。数据挖掘就是为顺应这种需要应运而生发展起来的数据处理技术。数据挖掘就是对观测到的数据集进行分析,目的是发现未知的关系和以数据拥有者可以理解并对其
- 从代码学习深度学习 - 情感分析及数据集 PyTorch版
飞雪白鹿€
#自然语言处理深度学习pytorch
文章目录前言1.认识数据集:aclImdb基本信息数据结构特点2.解压与读取数据2.1解压文件2.2读取评论与标签3.预处理数据集3.1词元化与构建词汇表3.2分析评论长度3.3截断与填充4.创建数据迭代器5.整合所有步骤总结前言欢迎来到“从代码学习深度学习”系列!今天,我们将深入探讨自然语言处理(NLP)中的一个核心任务:情感分析。随着互联网的普及,从产品评论、社交媒体到论坛讨论,我们每天都在产
- 文本表示的发展概述
抱抱宝
大模型自然语言处理
文本表示的目的是将人类语言的自然形式转化为计算机可以处理的形式,也就是将文本数据数字化,使计算机能够对文本进行有效的分析和处理。文本表示是NLP领域中的一项基础性和必要性工作,它直接影响甚至决定着NLP系统的质量和性能。在NLP中,文本表示涉及到将文本中的语言单位(如字、词、短语、句子等)以及它们之间的关系和结构信息转换为计算机能够理解和操作的形式,例如向量、矩阵或其他数据结构。这样的表示不仅需要
- Linux根据进程id获取此进程的端口号
Linux根据进程id获取此进程的端口号:在Linux中,可以通过/proc文件系统来获取一个进程的相关信息,包括其端口号。以下是一种常见的方法,可以根据进程ID获取对应进程的端口号:1、使用netstat命令结合管道和过滤器,来查找与指定进程ID相关的网络连接。netstat-nlp|grep2、执行上面命令,结果如下,其中8501就是37这个进程的端口号3、根据端口号查找进程lsof-i:或者
- 深度解析 ImportError: cannot import name AdamW from transformers——从报错原理到完美解决方案
Tadas-Gao
机器学习人工智能机器学习pytorchLLMpython
为什么这个错误值得关注?在自然语言处理(NLP)领域,HuggingFace的transformers库已成为事实上的标准工具。然而,随着库的快速迭代,开发者经常会遇到ImportError:cannotimportname'AdamW'from'transformers'这个看似简单却令人头疼的错误。本文将带你深入理解这个错误的本质,提供多种解决方案,并分享版本管理的专业技巧,帮助你在AI开发中
- 美元反弹压制金价:基于ARIMA-GARCH模型的汇率-黄金联动效应解构
金融小师妹
人工智能大数据算法
摘要:本文采用LSTM-Attention混合模型进行价格序列特征提取,结合自然语言处理(NLP)构建政策不确定性指数(PUI),运用ARIMA-GARCH模型预测美元流动性溢价因子(DLP)变动。通过DSGE模型模拟贸易政策冲击传导路径,并基于Nelson-Siegel模型分解美债收益率曲线结构分析。现货黄金呈现典型的三阶段波动特征:首先在3392美元/盎司关键阻力位触发动量交易突破,随后因美元
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文