单目标应用:海鸥优化算法(Seagull optimization algorithm,SOA)求解无人机路径规划(提供MATLAB代码)

一、海鸥优化算法

海鸥优化算法(Seagull optimization algorithm,SOA)由Gaurav Dhiman等人于2019年提出。
海鸥是候鸟。繁殖期主要栖息于北极苔原、森林苔原、荒漠、草地的河流、湖泊、水塘和沼泽中,冬季主要栖息于海岸、河口和港湾。成对或成小群活动或在空中飞翔。在海边和海港,成群的漂浮在水面上,游泳和觅食。海鸥以海滨小鱼、昆虫、软体动物、甲壳类以及耕地里的蠕虫和蛴螬为食。

海鸥优化算法原理

二、无人机(UAV)三维路径规划

无人机三维路径规划数学模型参考如下文献:

Phung M D , Ha Q P . Safety-enhanced UAV Path Planning with Spherical Vector-based Particle Swarm Optimization[J]. arXiv e-prints, 2021.

目标函数由路径长度成本,安全性与可行性成本、飞行高度成本和路径平滑成本共同组成:

(1)路径长度成本

路径长度成本由相邻两个节点之间的欧氏距离和构成,其计算公式如下:
在这里插入图片描述

(2)路径安全性与可行性成本

在这里插入图片描述

路径安全性与可行性成本通过下式计算:

在这里插入图片描述

(3)路径飞行高度成本

在这里插入图片描述

飞行高度成本通过如下公式计算所得:
在这里插入图片描述
在这里插入图片描述

(4)路径平滑成本

在这里插入图片描述

投影向量通过如下公式计算:

在这里插入图片描述

转弯角度的计算公式为:
在这里插入图片描述

爬坡角度的计算公式为:

在这里插入图片描述

平滑成本的计算公式为:
在这里插入图片描述

(5)总成本(目标函数)

在这里插入图片描述

总成本由最优路径成本,安全性与可行性成本、飞行高度成本和路径平滑成本的线性加权所得。其中,b为加权系数。

三、实验结果

在三维无人机路径规划中,无人机的路径由起点,终点以及起始点间的点共同连接而成。因此,自变量为无人机起始点间的各点坐标,目标函数为总成本(公式9)。

3.1参数设置

(1)设8个柱状障碍物的位置及半径:

 R1=80;  % Radius 80
x1 = 400; y1 = 500; z1 = 100; % center


R2=70;  % Radius 70
x2 = 600; y2 = 200; z2 = 150; % center

R3=80;  % Radius 80
x3 = 500; y3 = 350; z3 = 150; % center

R4=70;  % Radius 70
x4 = 350; y4 = 200; z4 = 150; % center

R5=70;  % Radius 70 
x5 = 700; y5 = 550; z5 = 150; % center


R6=80;  % Radius 80
x6 = 650; y6 = 750; z6 = 150; % center

R7=100;  % Radius 100
x7 = 750; y7 = 350; z7 = 150; % center

R8=50;  % Radius 50
x8 = 300; y8 = 350; z8 = 150; % center

(2)起始点位置为:

start_location = [200;100;150];
end_location = [800;800;150];

(3)起始点间共10个待求点。

(4)加权系数b=[5 1 10 1]。

(5)海鸥优化算法的种群大小为50,最大迭代次数为50。

4.2求解结果

close all
clear
clc
dbstop if all error
global model
model = CreateModel(); % Create search map and parameters
F='F1';
[Xmin,Xmax,dim,fobj] = fun_info(F);
pop=50;
maxgen=50;
[fMin , bestX,Convergence_curve ] = SOA(pop, maxgen,Xmin,Xmax,dim,fobj);
% save bestX bestX
% load('bestX.mat');
BestPosition = SphericalToCart(bestX);
PlotSolution(BestPosition);
figure
plot(Convergence_curve)
xlabel('Iteration');
ylabel('Best Cost');
grid on;

其中一次结果:(黑色正方形是起点,黑色圆圈是终点,共有8个柱状障碍物,红线为优化得到的无人机路线。)

单目标应用:海鸥优化算法(Seagull optimization algorithm,SOA)求解无人机路径规划(提供MATLAB代码)_第1张图片

单目标应用:海鸥优化算法(Seagull optimization algorithm,SOA)求解无人机路径规划(提供MATLAB代码)_第2张图片

四、参考代码

你可能感兴趣的:(单目标应用,MATLAB,IT技术,matlab,算法,开发语言)