代码库地址: mnist
目录
普通单机单卡训练流程
分布式训练需要的改动
horovod方式
以mnist为例,主要包括数据加载、模型构建、优化器和迭代训练等部分
import argparse
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from datetime import datetime
from tqdm import tqdm
class ConvNet(nn.Module):
def __init__(self, num_classes=10):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = nn.Linear(7*7*32, num_classes)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
def train(gpu, args):
torch.manual_seed(0)
model = ConvNet()
torch.cuda.set_device(gpu)
model.cuda(gpu)
batch_size = 100
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(gpu)
optimizer = torch.optim.SGD(model.parameters(), 1e-4)
# Data loading code
train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size,shuffle=True, num_workers=0,pin_memory=True)
start = datetime.now()
for epoch in range(args.epochs):
if gpu == 0:
print("Epoch: {}/{}".format(epoch+1, args.epochs))
pbar = tqdm(train_loader)
for images, labels in pbar:
images = images.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if gpu == 0:
msg = 'Loss: {:.4f}'.format(loss.item())
pbar.set_description(msg)
if gpu == 0:
print("Training complete in: " + str(datetime.now() - start))
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-n', '--nodes', default=1, type=int, metavar='N')
parser.add_argument('-g', '--gpus', default=2, type=int, help='number of gpus per node')
parser.add_argument('-nr', '--nr', default=0, type=int, help='ranking within the nodes')
parser.add_argument('--epochs', default=10, type=int, metavar='N', help='number of total epochs to run')
args = parser.parse_args()
train(0, args)
if __name__ == '__main__':
main()
在2080Ti上训练2个epoch耗时1分12秒.
需要的改动 0.引入必须的库
import os
import torch.multiprocessing as mp
import torch.distributed as dist
1.修改main函数
def main():
parser = argparse.ArgumentParser()
...
args = parser.parse_args()
args.world_size = args.gpus * args.nodes
if args.world_size > 1:
os.environ['MASTER_ADDR'] = '127.0.0.1' #
os.environ['MASTER_PORT'] = '8889' #
mp.spawn(train, nprocs=args.gpus, args=(args,)) #
else:
train(0, args)
2.初始化通信库
def train(gpu, args):
if args.world_size > 1:
rank = args.nr * args.gpus + gpu
dist.init_process_group(backend='nccl', init_method='env://', world_size=args.world_size, rank=rank)
3.送给每个node的数据需要打乱,有请DistributedSampler
if args.world_size > 1:
model = nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset,num_replicas=args.world_size,rank=rank)
shuffle = False
else:
train_sampler = None
shuffle = True
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size,shuffle=shuffle, num_workers=0,pin_memory=True,sampler=train_sampler)
这里我们首先计算出当前进程序号:
rank = args.nr * args.gpus + gpu
,然后就是通过dist.init_process_group
初始化分布式环境,其中backend
参数指定通信后端,包括mpi, gloo, nccl
,这里选择nccl
,这是Nvidia提供的官方多卡通信框架,相对比较高效。mpi
也是高性能计算常用的通信协议,不过你需要自己安装MPI实现框架,比如OpenMPI。gloo
倒是内置通信后端,但是不够高效。init_method
指的是如何初始化,以完成刚开始的进程同步;这里我们设置的是env://
,指的是环境变量初始化方式,需要在环境变量中配置4个参数:MASTER_PORT,MASTER_ADDR,WORLD_SIZE,RANK,前面两个参数我们已经配置,后面两个参数也可以通过dist.init_process_group
函数中world_size
和rank
参数配置。其它的初始化方式还包括共享文件系统(https://pytorch.org/docs/stable/distributed.html#shared-file-system-initialization)以及TCP(https://pytorch.org/docs/stable/distributed.html#tcp-initialization),比如采用TCP作为初始化方法init_method='tcp://10.1.1.20:23456'
,其实也是要提供master的IP地址和端口。注意这个调用是阻塞的,必须等待所有进程来同步,如果任何一个进程出错,就会失败。
完整代码, 搜索add可快速直达修改的地方
import argparse
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from datetime import datetime
from tqdm import tqdm
# add 0
import os
import torch.multiprocessing as mp
import torch.distributed as dist
class ConvNet(nn.Module):
def __init__(self, num_classes=10):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = nn.Linear(7*7*32, num_classes)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
def train(gpu, args):
# add 2
if args.world_size > 1:
rank = args.nr * args.gpus + gpu
dist.init_process_group(backend='nccl', init_method='env://', world_size=args.world_size, rank=rank)
torch.manual_seed(0)
model = ConvNet()
torch.cuda.set_device(gpu)
model.cuda(gpu)
batch_size = 100
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(gpu)
optimizer = torch.optim.SGD(model.parameters(), 1e-4)
# Data loading code
train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
# add 3
if args.world_size > 1:
model = nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset,num_replicas=args.world_size,rank=rank)
shuffle = False
else:
train_sampler = None
shuffle = True
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size,shuffle=shuffle, num_workers=0,pin_memory=True,sampler=train_sampler)
start = datetime.now()
for epoch in range(args.epochs):
if gpu == 0:
print("Epoch: {}/{}".format(epoch+1, args.epochs))
pbar = tqdm(train_loader)
for i, (images, labels) in enumerate(pbar):
images = images.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if gpu == 0:
msg = 'Loss: {:.4f}'.format(loss.item())
pbar.set_description(msg)
if gpu == 0:
print("Training complete in: " + str(datetime.now() - start))
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-n', '--nodes', default=1, type=int, metavar='N')
parser.add_argument('-g', '--gpus', default=2, type=int, help='number of gpus per node')
parser.add_argument('-nr', '--nr', default=0, type=int, help='ranking within the nodes')
parser.add_argument('--epochs', default=10, type=int, metavar='N', help='number of total epochs to run')
args = parser.parse_args()
# add 1
args.world_size = args.gpus * args.nodes
if args.world_size > 1:
os.environ['MASTER_ADDR'] = '127.0.0.1' #
os.environ['MASTER_PORT'] = '8889' #
mp.spawn(train, nprocs=args.gpus, args=(args,)) #
else:
train(0, args)
if __name__ == '__main__':
main()
耗时缩小到了48秒,还是很显著的.
Horovod是一个专注于分布式训练的深度学习框架,通过Horovod可以为Tensorflow、Keras、Pytorch和MXNet提供分布式训练的能力。使用Horovod进行分布式训练主要能给我们带来两个好处:
它的安装非常简单,pip install horovod即可
通过Horovod编写分布式训练代码,一般为6个步骤:
hvd.init()
来初始化Horovod;完整代码,可搜索add一键直达修改的地方
import argparse
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from datetime import datetime
from tqdm import tqdm
# add 0
import horovod.torch as hvd
class ConvNet(nn.Module):
def __init__(self, num_classes=10):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = nn.Linear(7*7*32, num_classes)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
def train(gpu, args):
torch.manual_seed(0)
model = ConvNet()
torch.cuda.set_device(gpu)
model.cuda(gpu)
batch_size = 100
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(gpu)
optimizer = torch.optim.SGD(model.parameters(), 1e-4)
# Data loading code
train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
# add 2
if hvd.size() > 1:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
shuffle = False
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters(), op=hvd.Average)
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
else:
train_sampler = None
shuffle = True
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size,shuffle=shuffle, num_workers=0, sampler=train_sampler, pin_memory=True)
start = datetime.now()
for epoch in range(args.epochs):
if gpu == 0:
print("Epoch: {}/{}".format(epoch+1, args.epochs))
if gpu == 0:
pbar = tqdm(train_loader)
else:
pbar = train_loader
for images, labels in pbar:
images = images.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if gpu == 0:
msg = 'Loss: {:.4f}'.format(loss.item())
pbar.set_description(msg)
if gpu == 0:
print("Training complete in: " + str(datetime.now() - start))
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-n', '--nodes', default=1, type=int, metavar='N')
parser.add_argument('-g', '--gpus', default=2, type=int, help='number of gpus per node')
parser.add_argument('-nr', '--nr', default=0, type=int, help='ranking within the nodes')
parser.add_argument('--epochs', default=10, type=int, metavar='N', help='number of total epochs to run')
args = parser.parse_args()
# add 1
hvd.init()
train(hvd.local_rank(), args)
if __name__ == '__main__':
main()
启动命令:
# Horovod 1 单机训练
#horovodrun -np 1 -H localhost:1 python train_horovod.py
# Horovod 2 双卡训练
horovodrun -np 2 -H localhost:2 python train_horovod.py
# Horovod 4 四卡训练
#horovodrun -np 4 -H localhost:4 python train_horovod.py
这种方式下双卡仅需41秒
虽然单卡的速度没有变快,但是处理任务的worker多了,吞吐就上去了,4卡仅需要20秒
PyTorch分布式训练基础--DDP使用
主要变动的位置包括:
1. 启动的方式引入了一个多进程机制;
2. 引入了几个环境变量;
3. DataLoader多了一个sampler参数;
4. 网络被一个DistributedDataParallel(net)又包裹了一层;
5. ckpt的保存方式发生了变化。
Pytorch - 分布式通信原语(附源码)
Pytorch - 多机多卡极简实现(附源码)
Pytorch - DDP实现分析
Pytorch - 使用Horovod分布式训练
Pytorch - Horovod分布式训练源码分析