机器学习 —— 计算评估指标

计算评估指标

  • 假设有100个数据样本,其中有正样本70个,负样本30个
  • 现在模型查出有50个正样本,其中真正的正样本是30个
  • 求:精确率precision,召回率recall, F1值,准确率Accuracy

TP = 30
FP = 20
TN = 10
FN = 40

# 精确率(查准率)
precision = TP / (TP + FP) = 30 / 50 = 0.6
# 召回率(查全率)
recall = TP / (TP + FN) = 30 / 70 = 3/7
# F1值
f1 = (2 * precision * recall) / (precision + recall) = 0.5
# 准确率
accuracy = (TN + TP) / (TN + TP + FN + FP) = 0.4

画ROC曲线 和 计算auc值

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris

data,target = load_iris(return_X_y=True)

# 二分类
target2 = target[0:100].copy()
data2 = data[:100].copy()

使用LR模型

  • from sklearn.linear_model import LogisticRegression
  • from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test = train_test_split(data2,target2,test_size=0.2)

lr = LogisticRegression()
lr.fit(x_train,y_train)

# 预测
y_pred = lr.predict(x_test)
y_pred
# array([0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1])

# ROC

# metrics:评估
from sklearn.metrics import roc_curve,auc

ROC 曲线

# y_true:真是结果
# y_score:预测结果
fpr,tpr,_ = roc_curve(y_test,y_pred)    # 返回值:fpr,tpr,thresholds
# fpr:伪阳率
# tpr:真阳率


display(fpr,tpr)
'''
array([0., 0., 1.])
array([0., 1., 1.])
'''

plt.plot(fpr,tpr)

机器学习 —— 计算评估指标_第1张图片

auc

auc(fpr,tpr)
# 1.0

使用交叉验证来计算auc值,平均auc值

  • from sklearn.model_selection import KFold, StratifiedKFold
from sklearn.model_selection import KFold, StratifiedKFold

skf = StratifiedKFold()

data2.shape
# (100, 4)

list(skf.split(data2,target2))
'''
[(array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
         27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
         44, 45, 46, 47, 48, 49, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
         71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
         88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]),
  array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 50, 51, 52, 53, 54, 55, 56,
         57, 58, 59])),
 (array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 20, 21, 22, 23, 24, 25, 26,
         27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
         44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 70,
         71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
         88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]),
  array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 60, 61, 62, 63, 64, 65, 66,
         67, 68, 69])),
 (array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
         17, 18, 19, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
         44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
         61, 62, 63, 64, 65, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 86, 87,
         88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]),
  array([20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 70, 71, 72, 73, 74, 75, 76,
         77, 78, 79])),
 (array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
         17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 40, 41, 42, 43,
         44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
         61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
         78, 79, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]),
  array([30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 80, 81, 82, 83, 84, 85, 86,
         87, 88, 89])),
 (array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
         17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
         34, 35, 36, 37, 38, 39, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
         61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
         78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89]),
  array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 90, 91, 92, 93, 94, 95, 96,
         97, 98, 99]))]
'''

for train,test in skf.split(data2,target2):
    x_train = data2[train]
    y_train = target2[train]
    x_test = data2[test]
    y_test = target2[test]
    
    
    # LR
    lr = LogisticRegression()
    lr.fit(x_train,y_train)
    y_pred = lr.predict(x_test)
    
    # roc
    fpr,tpr,_ = roc_curve(y_test,y_pred)
    plt.plot(fpr,tpr)
    print(auc(fpr,tpr))
'''
1.0
1.0
1.0
1.0
1.0
'''

机器学习 —— 计算评估指标_第2张图片

添加噪声

  • 给data2添加500列随机值
data2.shape
# (100, 4)

data3 = np.random.randn(100,500)
data3.shape
# (100, 500)

# 左右拼接:水平拼接
data4 = np.hstack((data2,data3))
data4.shape
# (100, 504)

skf = StratifiedKFold()

auc_list = []
for train,test in skf.split(data4,target2):
    x_train = data4[train]
    y_train = target2[train]
    x_test = data4[test]
    y_test = target2[test]
    
    
    # LR
    lr = LogisticRegression()
    lr.fit(x_train,y_train)
    # 预测
    # y_pred = lr.predict(x_test)
    # 预测概率
    y_proba = lr.predict_proba(x_test)
    print('y_proba:',y_proba)
    
    
    # roc
    fpr,tpr,_ = roc_curve(y_test,y_proba[:,1])
    
    # 画图
    plt.plot(fpr,tpr)

    print('fpr:',fpr)
    print('tpr:',tpr)
    print('auc:',auc(fpr,tpr))
    print('*'*100)
    
    auc_list.append(auc(fpr,tpr))

# 平均 auc
np.array(auc_list).mean()
'''
y_proba: [[0.3267921  0.6732079 ]
 [0.96683557 0.03316443]
 [0.77520064 0.22479936]
 [0.65359444 0.34640556]
 [0.28117064 0.71882936]
 [0.51257663 0.48742337]
 [0.89757814 0.10242186]
 [0.70565166 0.29434834]
 [0.95428978 0.04571022]
 [0.79620831 0.20379169]
 [0.11122497 0.88877503]
 [0.14503562 0.85496438]
 [0.09769969 0.90230031]
 [0.1427527  0.8572473 ]
 [0.64864805 0.35135195]
 [0.77964905 0.22035095]
 [0.50532259 0.49467741]
 [0.88917687 0.11082313]
 [0.20508718 0.79491282]
 [0.22918407 0.77081593]]
fpr: [0.  0.  0.  0.2 0.2 0.3 0.3 0.6 0.6 0.7 0.7 1. ]
tpr: [0.  0.1 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.  1. ]
auc: 0.82
****************************************************************************************************
y_proba: [[0.81694936 0.18305064]
 [0.58068561 0.41931439]
 [0.95133392 0.04866608]
 [0.40420908 0.59579092]
 [0.3271581  0.6728419 ]
 [0.99027305 0.00972695]
 [0.64918216 0.35081784]
 [0.90200046 0.09799954]
 [0.63054898 0.36945102]
 [0.93316453 0.06683547]
 [0.53006938 0.46993062]
 [0.17861305 0.82138695]
 [0.006705   0.993295  ]
 [0.09477154 0.90522846]
 [0.56917531 0.43082469]
 [0.03227622 0.96772378]
 [0.22280499 0.77719501]
 [0.15966529 0.84033471]
 [0.02610573 0.97389427]
 [0.01608401 0.98391599]]
fpr: [0.  0.  0.  0.2 0.2 1. ]
tpr: [0.  0.1 0.8 0.8 1.  1. ]
auc: 0.9600000000000001
****************************************************************************************************
y_proba: [[0.73755142 0.26244858]
 [0.81486985 0.18513015]
 [0.98155993 0.01844007]
 [0.62469409 0.37530591]
 [0.86580681 0.13419319]
 [0.93865476 0.06134524]
 [0.76684129 0.23315871]
 [0.26828926 0.73171074]
 [0.95379293 0.04620707]
 [0.82872899 0.17127101]
 [0.0450968  0.9549032 ]
 [0.4752642  0.5247358 ]
 [0.38068224 0.61931776]
 [0.56844634 0.43155366]
 [0.49825931 0.50174069]
 [0.05526257 0.94473743]
 [0.04108483 0.95891517]
 [0.00417408 0.99582592]
 [0.09069155 0.90930845]
 [0.42708884 0.57291116]]
fpr: [0.  0.  0.  0.1 0.1 1. ]
tpr: [0.  0.1 0.5 0.5 1.  1. ]
auc: 0.9500000000000001
****************************************************************************************************
y_proba: [[0.89441894 0.10558106]
 [0.65744045 0.34255955]
 [0.67092317 0.32907683]
 [0.78029511 0.21970489]
 [0.69217484 0.30782516]
 [0.97861482 0.02138518]
 [0.711046   0.288954  ]
 [0.94908913 0.05091087]
 [0.62170149 0.37829851]
 [0.57082372 0.42917628]
 [0.59759391 0.40240609]
 [0.53269573 0.46730427]
 [0.08361238 0.91638762]
 [0.3546565  0.6453435 ]
 [0.13494363 0.86505637]
 [0.01205661 0.98794339]
 [0.04489417 0.95510583]
 [0.57049956 0.42950044]
 [0.3636283  0.6363717 ]
 [0.13165516 0.86834484]]
fpr: [0.  0.  0.  0.1 0.1 1. ]
tpr: [0.  0.1 0.9 0.9 1.  1. ]
auc: 0.99
****************************************************************************************************
y_proba: [[0.85161531 0.14838469]
 [0.9726683  0.0273317 ]
 [0.53251231 0.46748769]
 [0.72269431 0.27730569]
 [0.87414963 0.12585037]
 [0.79130481 0.20869519]
 [0.98550565 0.01449435]
 [0.56034861 0.43965139]
 [0.55647585 0.44352415]
 [0.72393126 0.27606874]
 [0.03734951 0.96265049]
 [0.16550755 0.83449245]
 [0.28703024 0.71296976]
 [0.1594562  0.8405438 ]
 [0.07379419 0.92620581]
 [0.48656743 0.51343257]
 [0.3818963  0.6181037 ]
 [0.23117614 0.76882386]
 [0.4644294  0.5355706 ]
 [0.46337177 0.53662823]]
fpr: [0. 0. 0. 1.]
tpr: [0.  0.1 1.  1. ]
auc: 1.0
****************************************************************************************************
0.944
'''

机器学习 —— 计算评估指标_第3张图片

线性插值

x = np.linspace(0,10,30)
y = np.sin(x)

plt.scatter(x,y)

机器学习 —— 计算评估指标_第4张图片

x2 = np.linspace(0,10,100)

# interp:线性插值
# 让 x2,y2 之间的关系和 x,y之间的关系一样
y2 = np.interp(x2,x,y)

plt.scatter(x,y)
plt.scatter(x2,y2,marker='*')

机器学习 —— 计算评估指标_第5张图片

计算平均AUC值,和平均ROC曲线

  • auc <= 0.5 : 模型很差
  • auc > 0.6 : 模型一般
  • auc > 0.7 : 模型还可以
  • auc > 0.8 : 模型较好
  • auc > 0.9 : 模型非常好

 

# 算平均AUC值
np.array(auc_list).mean()
# 0.944

# 相当于 x 轴
fprs = np.linspace(0,1,101)

tprs_list = []
auc_list = []

for train,test in skf.split(data4,target2):
    x_train = data4[train]
    y_train = target2[train]
    x_test = data4[test]
    y_test = target2[test]
    
    
    # LR
    lr = LogisticRegression()
    lr.fit(x_train,y_train)
    # 预测
    # y_pred = lr.predict(x_test)
    # 预测概率
    y_proba = lr.predict_proba(x_test)
    
    
    # roc
    fpr,tpr,_ = roc_curve(y_test,y_proba[:,1])
    
    auc_ = auc(fpr,tpr)
    auc_list.append(auc_)
    
    # 画图
    plt.plot(fpr,tpr,ls='--',label=f'auc:{np.round(auc_,2)}')
    
    
    # 线性插值
    # 让 fprs 与 tprs 的关系和 fpr 与 tpr 的关系一样
    tprs = np.interp(fprs,fpr,tpr)
    
    tprs_list.append(tprs)


# 平均 tprs
tprs_mean = np.array(tprs_list).mean(axis=0)

auc_mean = np.array(auc_list).mean()

# 画平均ROC图
plt.plot(fprs,tprs_mean,label=f'auc_mean:{np.round(auc_mean,2)}')

机器学习 —— 计算评估指标_第6张图片

你可能感兴趣的:(机器学习,python)