【阿旭机器学习实战】【24】信用卡用户流失预测实战

【阿旭机器学习实战】系列文章主要介绍机器学习的各种算法模型及其实战案例,欢迎点赞,关注共同学习交流。

本文针对某国外匿名化处理后的信用卡真实数据集,通过建模判断该用户是否已经流失,包括特征处理与分类模型建模评估。

目录

  • 问题描述
  • 1. 读取数据并分离特征与标签
  • 2.特征工程
    • 2.1 删除无用特征
    • 2.2 将字符串特征进行编码
    • 2.3 对特征数据进行归一化
  • 3. 建模预测与评估

问题描述

依据某国外匿名化处理后的真实数据集,通过建模,判断该用户是否已经流失。

1. 读取数据并分离特征与标签

import pandas as pd
import numpy as np
# 读取数据
train_data = pd.read_csv('./Churn-Modelling.csv')
test_data = pd.read_csv('./Churn-Modelling-Test-Data.csv')
x_train = train_data.iloc[:,:-1]
y_train = train_data.iloc[:,-1].astype(int)
x_test = test_data.iloc[:,:-1]
y_test = test_data.iloc[:,-1].astype(int)
x_train.head()
RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary
0 1 15634602 Hargrave 619 France Female 42 2 0.00 1 1 1 101348.88
1 2 15647311 Hill 608 Spain Female 41 1 83807.86 1 0 1 112542.58
2 3 15619304 Onio 502 France Female 42 8 159660.80 3 1 0 113931.57
3 4 15701354 Boni 699 France Female 39 1 0.00 2 0 0 93826.63
4 5 15737888 Mitchell 850 Spain Female 43 2 125510.82 1 1 1 79084.10

数据说明:
RowNumber:行号
CustomerID:用户编号
Surname:用户姓名
CreditScore:信用分数
Geography:用户所在国家/地区
Gender:用户性别
Age:年龄
Tenure:当了本银行多少年用户
Balance:存贷款情况
NumOfProducts:使用产品数量
HasCrCard:是否有本行信用卡
IsActiveMember:是否活跃用户
EstimatedSalary:估计收入
Exited:是否已流失,这将作为我们的标签数据

2.特征工程

2.1 删除无用特征

# 删除前三列没用的数据
x_train = x_train.drop(labels=x_train.columns[[0,1,2]], axis=1)
x_test = x_test.drop(labels=x_test.columns[[0,1,2]], axis=1)
x_train.head()
CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary
0 619 France Female 42 2 0.00 1 1 1 101348.88
1 608 Spain Female 41 1 83807.86 1 0 1 112542.58
2 502 France Female 42 8 159660.80 3 1 0 113931.57
3 699 France Female 39 1 0.00 2 0 0 93826.63
4 850 Spain Female 43 2 125510.82 1 1 1 79084.10
y_train[:5]
0    1
1    0
2    1
3    0
4    0
Name: Exited, dtype: int32

2.2 将字符串特征进行编码

# 国家与性别两列为非数值型数据,使用LabelEncoder进行编码,将其转换为数值数据
from sklearn.preprocessing import LabelEncoder
Lb1 = LabelEncoder()
x_train.iloc[:,1] = Lb1.fit_transform(x_train.iloc[:,1])
x_test.iloc[:,1] = Lb1.transform(x_test.iloc[:,1])
Lb2 = LabelEncoder()
x_train.iloc[:,2] = Lb2.fit_transform(x_train.iloc[:,2])
x_test.iloc[:,2] = Lb2.transform(x_test.iloc[:,2])
x_train[:5]
CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary
0 619 0 0 42 2 0.00 1 1 1 101348.88
1 608 2 0 41 1 83807.86 1 0 1 112542.58
2 502 0 0 42 8 159660.80 3 1 0 113931.57
3 699 0 0 39 1 0.00 2 0 0 93826.63
4 850 2 0 43 2 125510.82 1 1 1 79084.10
x_train.info()

RangeIndex: 10000 entries, 0 to 9999
Data columns (total 10 columns):
CreditScore        10000 non-null int64
Geography          10000 non-null int64
Gender             10000 non-null int64
Age                10000 non-null int64
Tenure             10000 non-null int64
Balance            10000 non-null float64
NumOfProducts      10000 non-null int64
HasCrCard          10000 non-null int64
IsActiveMember     10000 non-null int64
EstimatedSalary    10000 non-null float64
dtypes: float64(2), int64(8)
memory usage: 781.3 KB

2.3 对特征数据进行归一化

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.transform(x_test)
x_train[:5]
array([[-0.32622142, -0.90188624, -1.09598752,  0.29351742, -1.04175968,
        -1.22584767, -0.91158349,  0.64609167,  0.97024255,  0.02188649],
       [-0.44003595,  1.51506738, -1.09598752,  0.19816383, -1.38753759,
         0.11735002, -0.91158349, -1.54776799,  0.97024255,  0.21653375],
       [-1.53679418, -0.90188624, -1.09598752,  0.29351742,  1.03290776,
         1.33305335,  2.52705662,  0.64609167, -1.03067011,  0.2406869 ],
       [ 0.50152063, -0.90188624, -1.09598752,  0.00745665, -1.38753759,
        -1.22584767,  0.80773656, -1.54776799, -1.03067011, -0.10891792],
       [ 2.06388377,  1.51506738, -1.09598752,  0.38887101, -1.04175968,
         0.7857279 , -0.91158349,  0.64609167,  0.97024255, -0.36527578]])

3. 建模预测与评估

# 使用逻辑回归进行建模
from sklearn.linear_model import LogisticRegression
lr=LogisticRegression()
sgd=SGDClassifier()
lr.fit(x_train,y_train)
lr_y_predict=lr.predict(x_test)
#使用逻辑斯蒂回归墨香自带的评分函数score获得模型在测试集上的准确性结果
print('LogisticRegression测试集准确度:',lr.score(x_test,y_test))
print('LogisticRegression训练集准确度:',lr.score(x_train,y_train))
LogisticRegression测试集准确度: 0.761
LogisticRegression训练集准确度: 0.809
from sklearn.metrics import classification_report
#使用classificaion_report模块获得LogisticRegression其他三个指标的结果
print(classification_report(y_test,lr_y_predict,target_names=['Exited','UnExited']))
             precision    recall  f1-score   support

     Exited       0.77      0.97      0.86       740
   UnExited       0.68      0.15      0.25       260

avg / total       0.74      0.76      0.70      1000

结果表明该模型准确率只有76%,还有一定的优化空间。

如果内容对你有帮助,感谢点赞+关注哦!

欢迎关注我的公众号:阿旭算法与机器学习,共同学习交流。
更多干货内容持续更新中…

你可能感兴趣的:(机器学习实战,人工智能,分类算法模型)