YOLOv5增加小目标检测层

YOLOv5增加小目标检测层_第1张图片

采用增加小目标检测层的方式来使YOLOv5能够检测小目标,只需要修改models下的yaml文件中的内容即可。

主要改变如下:

原yaml:

# parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, C3, [1024, False]],  # 9
  ]

# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

改变后的yaml:

# parameters
nc: 10  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

# anchors
anchors:
  - [5,6, 8,14, 15,11]
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, C3, [1024, False]],  # 9
  ]

# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [512, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 2], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 18], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [256, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],
   [-1, 3, C3, [512, False]],

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[21, 24, 27, 30], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

主要改变了两个地方:anchors和head

(1)anchors

原yaml:
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

改变后yaml:
anchors:
  - [5,6, 8,14, 15,11]
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

(2)head

原yaml:
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],                  # 第一段
   [-1, 3, C3, [512, False]],  

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],                  # 第二段
   [-1, 3, C3, [256, False]],  

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],                 # 第三段
   [-1, 3, C3, [512, False]],  

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],                 # 第四段
   [-1, 3, C3, [1024, False]],  

   [[17, 20, 23], 1, Detect, [nc, anchors]],   # 第五段
  ]

改变后yaml:
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],                  # 第一段
   [-1, 3, C3, [512, False]],  

   [-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],                  # 在第一段和第二段之间加入一段
   [-1, 3, C3, [512, False]],  

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 2], 1, Concat, [1]],                  # 将第二段这个地方的4改成2
   [-1, 3, C3, [256, False]],  

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 18], 1, Concat, [1]],                 # 在第二段和第三段之间加入一段
   [-1, 3, C3, [256, False]],  

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],                 # 第三段
   [-1, 3, C3, [512, False]],  

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],                 # 第四段
   [-1, 3, C3, [1024, False]],  

   [[21, 24, 27, 30], 1, Detect, [nc, anchors]], #将第五段[17, 20, 23]改成[21, 24, 27, 30]
  ]

这样就改好了。

注释:在yolov5的6.0版本作者将CSP换为C3,YOLOv5 2020年5月出来后不断更新,不断实践,设计出C3模块用来替换BottleneckCSP模块。当然这是作者在COCO等特定数据集上进行实验得出的,如果大家要进行迁移,也可以考虑不替换。二者的网络结构如下:

YOLOv5增加小目标检测层_第2张图片

可以看出C3相对于BottleneckCSP模块,少了一个1x1 conv,同时撤掉了一个BN层和激活函数。
 

参考文献:

YOLOv5改进—增加小目标检测层_加勒比海带66的博客-CSDN博客_yolov5增加小目标检测层

yolov5增加小目标检测层

YOLOV5网络结构设计的思考_奔跑的阿诺的博客-CSDN博客_网络架构设计

你可能感兴趣的:(人工智能,目标检测,深度学习,目标检测,深度学习,计算机视觉)