- 云原生边缘计算:重塑分布式智能的时空边界
桂月二二
云原生边缘计算分布式
引言:算力向数据源头迁移的革命特斯拉自动驾驶系统每小时产生20TB边缘数据,时延要求低于50ms。中国移动5G边缘云实现ARPU值提升38%,华为云IEF平台将工业质检响应速度提升至15ms以内。ABIResearch预测2026年边缘AI芯片市场规模达520亿美元,KubeEdge管理边缘节点数突破千万级,单节点资源开销仅为K8s的1/8。一、边缘计算架构范式演进1.1技术架构对比矩阵特征维度中
- 深度学习模型:原理、应用与代码实践
accurater
c++算法笔记人工智能深度学习
引言深度学习作为人工智能的核心技术,已在图像识别、自然语言处理、代码生成等领域取得突破性进展。其核心在于通过多层神经网络自动提取数据特征,解决复杂任务。本文将从基础理论、模型架构、优化策略、应用场景及挑战等多个维度展开,结合代码示例,系统解析深度学习模型的技术脉络与实践方法。一、深度学习基础理论神经网络基本原理神经网络由输入层、隐藏层和输出层构成,通过反向传播算法调整权重。以全连接网络为例,前向传
- 用于网络安全的生成式 AI:利用 AI 增强威胁检测和响应
云上笛暮
AIforSecurity人工智能
一、引言技术的进步彻底改变了我们的生活、工作和交流方式。然而,随着这些技术的进步,保护它们免受网络威胁的挑战也随之而来。网络安全已成为任何组织的重要组成部分,随着网络攻击越来越复杂,传统的威胁检测和响应方法已不再足够。这导致了生成人工智能等新技术的发展,这些技术在增强网络安全方面显示出巨大潜力。在这篇博客中,我们将探讨生成式人工智能的概念、它在网络安全中的重要性,以及它如何用于增强威胁检测和响应。
- 深度解构:DeepSeek大模型架构与前沿应用的未来探秘
威哥说编程
架构ai
随着人工智能(AI)领域的快速发展,深度学习模型逐渐向着更加复杂和强大的方向演进。在这一波技术浪潮中,DeepSeek大模型作为一个重要代表,凭借其卓越的表现和广泛的应用,正在重新定义我们对AI的认知和期待。本篇文章将从架构到应用,全面解析DeepSeek大模型的技术特点,探索其在未来可能带来的创新与变革。1.DeepSeek大模型的架构设计DeepSeek大模型采用的是基于Transformer
- T41LQ专为人工智能物联网(AIoT)应用设计,适用于智能安防、智能家居、机器视觉等领域 软硬件资料+样品测试
li15817260414
君正人工智能物联网智能家居
君正(Ingenic)T系列芯片涵盖多个型号,每个型号根据不同应用需求提供了多个版本。以下是各型号及其主要版本:1.T23系列:T23N:标准版,适用于移动摄像机、安全监控、视频通话和视频分析等应用。T23ZN:佐罗标准版,功能与T23N类似,针对特定市场需求进行了优化。2.T31系列:T31L:简化版,适用于对成本和功耗有严格要求的应用场景。T31N:标准版,适用于广泛的智能视频应用。T31X:
- 人工智能生成内容(AIGC)对程序员的影响
AmHardy
AIGC人工智能AIGC程序员chatgptkimi
人工智能生成内容(AIGC)对程序员的影响引言AIGC技术正在深刻影响软件开发行业,给程序员带来诸多机遇和挑战。程序员不仅需要适应这些新兴技术,还要有效利用它们来提升自己的工作效率和创新能力。AIGC技术的优势效率提升代码生成:AI工具如GitHubCopilot可以预测代码片段、自动完成代码和生成文档,从而显著提升编程效率。自动化测试:AI可以自动生成测试用例和检测代码中的潜在问题,减少了手动测
- 【路径规划】基于A算法和Dijkstra算法的路径规划附Python代码
天天Matlab科研工作室
无人机matlab仿真电子资源算法python开发语言
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍路径规划作为人工智能和机器人技术领域的核心问题之一,在导航、交通运输、游戏开发等领域有着广泛的应用。解决路径规划问题,旨在找到一条从起始点到目标点,并满足特定约束条件(如最短
- 【AI】如何理解与应对AI中的敏感话题:详细分析与实用指南
丶2136
AI人工智能AI敏感话题
引言随着人工智能(AI)技术的不断发展,我们在与AI交互时,可能会遇到敏感话题的讨论限制。在许多情况下,AI系统为了避免触及社会、政治或文化敏感点,会对用户输入进行一定的筛选和过滤。那么,这些敏感话题是如何定义的,AI如何识别并避免这些话题,以及作为开发者和用户,我们该如何应对这一问题?本文将详细探讨这些问题,并通过表格、图示等方式帮助大家更好地理解。目录引言一、AI中的敏感话题分类与处理策略1.
- 智能算法安全优化与关键技术实践
智能计算研究中心
其他
内容概要智能算法的安全优化与关键技术实践已成为人工智能发展的核心命题。在医疗影像分析、金融风控、自动驾驶等场景中,联邦学习的分布式协作机制有效解决了数据孤岛问题,而生成对抗网络通过对抗训练增强数据生成能力,为小样本场景提供技术支撑。与此同时,可解释性算法通过特征重要性分析与决策路径可视化,显著提升模型透明度,降低黑箱风险。在技术实现层面,特征工程的自动化筛选与超参数动态调整策略优化了模型性能,结合
- 跨领域算法安全优化与实践路径
智能计算研究中心
其他
内容概要在算法技术加速渗透金融、医疗、自动驾驶等关键领域的背景下,跨领域算法的安全性与可落地性成为核心挑战。本书从联邦学习的隐私保护架构切入,探讨如何通过可解释性算法增强模型透明度,并引入量子计算与边缘计算的协同优化框架,构建兼顾效率与安全的技术范式。值得注意的是,医疗影像分析中的对抗攻击防御机制与生成对抗网络驱动的推荐系统创新,揭示了算法动态演进中的风险控制逻辑。技术整合不应局限于单一场景优化,
- 开源跨平台大模型工具Ollama的安全隐患
X.Cristiano
AI新闻Ollama漏洞大模型
源跨平台大模型工具Ollama的安全隐患及应对策略在当今数字化飞速发展的时代,人工智能技术尤其是大模型的应用已经渗透到我们生活的方方面面。从智能家居到医疗健康,从金融风控到教育娱乐,大模型为各个领域带来了前所未有的便利和创新。然而,随着技术的进步,安全问题也日益凸显。近期,清华大学网络空间测绘联合研究中心发布了一则关于开源跨平台大模型工具Ollama的安全通报,揭示了其默认配置中存在的严重安全隐患
- 第0节 机器学习与深度学习介绍
汉堡go
李哥深度学习专栏人工智能机器学习神经网络
人工智能:能够感知、推理、行动和适应的程序机器学习:能够随着数据量的增加而不断改进性能的算法(数学上的可解释性但准确率不是百分百,灵活度不高)深度学习:机器学习的一个子集:利用多层神经网络从大量数据中进行学习(设计一个很深的网络架构让机器自己学)(深度学习就是找一个函数f)机器学习算法简介(狭义)一般是基于数学,或者统计学的方法,具有很强的可解释性经典传统机器学习算法:KNN、决策树、朴素贝叶斯一
- Python常见的第三方库:requests、numpy、pandas
大数据张老师
pythonnumpypandas
常见的第三方库:requests、numpy、pandasPython拥有丰富的第三方库,涵盖了数据分析、网络爬取、人工智能、科学计算等多个领域。其中,requests、numpy和pandas是最常用的三个库,分别用于网络请求、数值计算和数据处理。本节将详细介绍它们的基本功能,并通过示例代码帮助理解它们的使用方法。requests:处理网络请求的库requests是Python中用于处理HTTP
- 人工智能与深度学习的应用案例解析及代码实现
accurater
人工智能深度学习科技机器人
引言人工智能(AI)与深度学习(DeepLearning)作为21世纪最具变革性的技术之一,已渗透到医疗、金融、交通、制造等各个领域。深度学习通过多层神经网络模拟人类认知过程,显著提升了复杂任务的自动化水平。本文将从技术原理、核心应用案例及代码实现三个维度,系统解析其实际应用,并探讨未来挑战与发展方向。一、深度学习技术概述1.1核心技术框架深度学习基于深度神经网络(DNN),其核心在于通过多层非线
- 人工智能之数学基础:对线性代数中逆矩阵的思考?
每天五分钟玩转人工智能
机器学习深度学习之数学基础线性代数人工智能矩阵机器学习逆矩阵向量
本文重点逆矩阵是线性代数中的一个重要概念,它在线性方程组、矩阵方程、动态系统、密码学、经济学和金融学以及计算机图形学等领域都有广泛的应用。通过了解逆矩阵的定义、性质、计算方法和应用,我们可以更好地理解和应用线性代数知识,解决各种实际问题。关于逆矩阵的思考现在我们有一个计算过程如上所示,我们知道矩阵的作用就是函数,向量a先经过矩阵1进行函数作用,然后再经过矩阵2函数作用最后可以得到输出向量c,这个过
- 特斯拉 FSD 算法深度剖析:软件层面全解读
python算法(魔法师版)
算法机器学习人工智能深度学习神经网络计算机视觉
一、引言特斯拉的FSD(FullSelf-Driving)系统作为自动驾驶领域的前沿成果,其软件层面的算法设计至关重要。本文将从软件的角度,深入探讨特斯拉FSD所采用的算法,包括感知、规划、控制等多个方面,以期为读者呈现一个全面、详细的FSD算法全景图。二、特斯拉FSD系统概述特斯拉FSD系统旨在实现车辆的完全自动驾驶,涵盖从感知周围环境到做出驾驶决策的全过程。该系统依托于特斯拉自研的硬件平台和软
- 上线DeepSeek大模型,黄山“大位”智算中心正式点亮
人工智能
2月28日,智启黄山,算领未来——黄山“大位”智算中心点亮仪式在黄山市大位人工智能计算中心举行,标志着黄山“大位”智算中心正式投入运营。同日,DeepSeek-R1大模型在黄山“大位”正式上线,通过“顶尖大模型+普惠算力底座”的深度融合,构建黄山市人工智能创新生态。黄山市委常委、副市长王恒来出席并致辞。他表示,黄山“大位”智算中心的点亮,是黄山市贯彻落实习近平总书记关于"人工智能是引领这一轮科技革
- DeepSeek大模型如何提升论文与代码效率
智能计算研究中心
其他
内容概要DeepSeek大模型作为人工智能领域的前沿成果,通过670亿参数的混合专家架构(Mixture-of-Experts,MoE),在多模态任务处理与专业场景应用中展现了显著优势。其核心技术突破体现在多语言处理能力、视觉语言理解模块以及深度优化的自然语言处理算法上,能够覆盖学术研究、代码开发、内容创作等多元场景。例如,在论文写作领域,模型通过智能选题推荐、文献综述生成及SEO关键词拓展功能,
- Manus学习手册合集【建议收藏】
周师姐
学习pdf人工智能
这两天,一款通用AI智能体Manus还没发布就火了,因为还在内测中,用户需要邀请码才能够体验,这就导致原本免费的邀请码在二手平台最高被炒到8万8。相比于之前爆火的DeepSeek和ChatGPT这类AI对话工具,Manus是全球首款真正意义上的通用人工智能!没错,就是科幻电影里面能够独立思考,自主运行的人工智能!!manus学习资料:https://pan.xunlei.com/s/VOKk8Cq
- 10个热门AI API(2024年2月)
程序员后端
人工智能(AI)在当今数字时代发挥着重要的作用,为企业带来了全新的机遇和变革。AI不再是一种陌生的科技概念,而是已经渗透到各行各业,成为推动创新和提升效率的关键引擎。其核心优势在于能够处理大规模的数据、执行复杂的任务、模拟人类思维过程,并以前所未有的方式改善业务流程。AIAPI作为连接企业和强大AI技术的桥梁,扮演着至关重要的角色。通过使用AIAPI,企业能够快速、轻松地将先进的人工智能功能集成到
- 人工智能学习大纲
互联网搬砖老肖
AI原力计划工具使用人工智能学习
前言人工智能正以惊人的速度发展,其潜力既令人兴奋,也引人深思。它既可能为解决全球性问题带来希望,也可能带来前所未有的挑战。人工智能时代的到来已是不可逆转的趋势,科幻电影中的某些场景或许将成为现实。我对人工智能的研究越深入,就越能感受到它的强大力量。我所担忧的不仅仅是它对就业市场的冲击,更是它可能对人类社会结构带来的深远影响。未来,对人工智能的理解可能像今天对电脑操作的掌握一样重要。掌握人工智能技术
- 特斯拉FSD系统:自动驾驶的未来
百态老人
人工智能笔记
FSD系统概述FSD(FullSelf-Driving)系统是特斯拉研发的一套高级自动驾驶技术,旨在实现车辆在各种道路和驾驶场景下的完全自动驾驶。FSD系统通过集成先进的计算机视觉、深度学习、传感器融合等技术,利用车辆上安装的多种传感器和先进的计算机视觉技术,实现对周围环境的感知和理解。特斯拉通过不断收集和分析实际道路数据,持续优化其自动驾驶算法,使得FSD技术的安全性和可靠性得到了大幅提升.FS
- 特斯拉FSD不同版本的进化
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
特斯拉,FSD,自动驾驶,深度学习,计算机视觉,强化学习,神经网络,模型训练1.背景介绍特斯拉自2016年推出Autopilot以来,一直致力于开发全自动驾驶系统,其目标是实现完全无人驾驶,让汽车能够像人类一样感知周围环境,做出安全可靠的驾驶决策。FSD(FullSelf-Driving)是特斯拉自动驾驶系统的最高级别,它旨在实现车辆在任何道路和环境条件下都能安全自主驾驶的能力。FSD的开发是一个
- Manus AI:全球首款通用型 AI Agent 的创新与挑战
萧鼎
python基础到进阶教程人工智能
1.引言:AIAgent时代的到来人工智能正在从单纯的对话式助手进化为更高级的智能体(Agent),能够自主完成任务,而不仅仅是提供信息或建议。2025年3月6日,由中国团队Monica推出的ManusAI正式亮相,号称全球首款通用型AIAgent(自主智能体)。与传统的AI助手相比,Manus不仅能够理解用户的自然语言指令,还能拆解任务、自动执行,并交付完整的成果。这标志着AI进入了一个新的发展
- 介绍常见的图片分类模型与算法
萧鼎
python基础到进阶教程算法分类数据挖掘
介绍常见的图片分类模型与算法在机器学习和深度学习的领域中,图片分类任务是一个广泛的应用场景。随着深度学习技术的飞速发展,很多强大的图像分类算法和模型已经被提出,广泛应用于从医疗影像到自动驾驶、从人脸识别到图像检索等多个领域。本文将重点介绍多种用于图像分类的经典算法与模型,帮助你了解在图像分类任务中常用的技术。1.传统机器学习模型在深度学习崭露头角之前,传统的机器学习模型是图像分类的主流方法。这些模
- AI与大数据融合:技术路径与行业赋能
互联网Ai好者
人工智能大数据
在数字化浪潮中,数据已成为驱动社会与商业变革的核心生产要素。据IDC预测,2025年全球数据总量将增长至175ZB,其中物联网设备、社交媒体及企业数字化系统贡献了80%的增量数据。面对海量异构数据的处理需求,传统分析工具已显现出明显局限:Gartner研究指出,仅35%的企业能有效利用其数据资产。在此背景下,人工智能技术通过算法突破与算力跃迁,正重塑大数据价值挖掘范式,构建从数据感知到决策闭环的全
- 大模型企业落地:汽车行业知识大模型应用
AGI大模型学习
python人工智能prompt机器学习深度学习学习语言模型
前言在当今这个信息爆炸的时代,知识管理成为了企业提升核心竞争力的关键。特别是在汽车行业这样一个技术密集、信息量庞大的领域,如何高效管理和利用知识资源,成为了每个企业必须面对的挑战。汽车行业的知识管理痛点汽车行业作为现代工业的集大成者,其知识体系庞杂而精细。从设计知识到生产知识,从营销知识到客户服务知识,每一个环节都依赖于大量的专业信息和经验积累。然而,传统的知识管理方式面临着诸多挑战:知识分散:知
- AI大模型在职业教育中的应用解决方案
中年猿人
人工智能ai学习
1.引言随着新经济、新技术的加速发展和经济结构的不断调整,职业教育迎来了新的发展机遇与挑战。传统的职业教育模式难以满足日益个性化、多样化的学习需求,同时,技术快速更迭使得职业技能更新频率大幅提高。这些变化要求职业教育能够更加灵活、高效地适应劳动力市场的需求,并为学生提供与时俱进的技能培养。人工智能(AI)作为一种前沿的科技趋势,其大模型技术通过强大的数据处理能力和学习算法,在众多行业中均展现了巨大
- STM32实战开发(133):基于STM32的智能GPS定位跟踪系统开发
嵌入式开发项目
STM32实战开发2025年嵌入式开发stm32struts嵌入式硬件单片机音视频自动驾驶
1.引言随着物联网、智能硬件和自动化技术的发展,智能GPS定位跟踪系统成为现代社会中不可或缺的组成部分。从智能交通、物流管理、车辆追踪到个人定位服务,GPS定位跟踪技术在各种行业中得到了广泛的应用。基于STM32的智能GPS定位跟踪系统能够提供高精度的定位信息、实时数据传输和可靠的系统性能,广泛应用于无人机、智能汽车、物流跟踪、宠物定位等场景。本博客将详细介绍如何基于STM32开发一个智能GPS定
- 弹性算力革命:企业级GPU云服务如何重构AI与图形处理的效能边界
企业级GPU云服务是一种面向企业用户,基于云计算技术,将强大的图形处理器(GPU)资源以服务的形式提供给企业的创新模式。通过这种模式,企业无需自行购置、安装和维护昂贵的GPU硬件设备,只需按需从云端获取GPU计算资源,就能满足自身多样化的业务需求。随着人工智能、大数据、深度学习、虚拟现实以及高性能计算等前沿技术在各行业的深入渗透,企业对于大规模并行计算能力的要求越来越高。GPU凭借其卓越的并行计算
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><