来自tensorboardX.SummaryWriter()的源码。其中包括了几个主要的API
class SummaryWriter(object):
"""Writes entries directly to event files in the logdir to be
consumed by TensorBoard.
The `SummaryWriter` class provides a high-level API to create an event file
in a given directory and add summaries and events to it. The class updates the
file contents asynchronously. This allows a training program to call methods
to add data to the file directly from the training loop, without slowing down
training.
"""
def __init__(self, logdir=None, comment='', purge_step=None, max_queue=10,
flush_secs=120, filename_suffix='', write_to_disk=True, log_dir=None, **kwargs):
"""Creates a `SummaryWriter` that will write out events and summaries
to the event file.
Args:
logdir (string): Save directory location. Default is
runs/**CURRENT_DATETIME_HOSTNAME**, which changes after each run.
Use hierarchical folder structure to compare
between runs easily. e.g. pass in 'runs/exp1', 'runs/exp2', etc.
for each new experiment to compare across them.
comment (string): Comment logdir suffix appended to the default
``logdir``. If ``logdir`` is assigned, this argument has no effect.
purge_step (int):
When logging crashes at step :math:`T+X` and restarts at step :math:`T`,
any events whose global_step larger or equal to :math:`T` will be
purged and hidden from TensorBoard.
Note that crashed and resumed experiments should have the same ``logdir``.
max_queue (int): Size of the queue for pending events and
summaries before one of the 'add' calls forces a flush to disk.
Default is ten items.
flush_secs (int): How often, in seconds, to flush the
pending events and summaries to disk. Default is every two minutes.
filename_suffix (string): Suffix added to all event filenames in
the logdir directory. More details on filename construction in
tensorboard.summary.writer.event_file_writer.EventFileWriter.
write_to_disk (boolean):
If pass `False`, SummaryWriter will not write to disk.
Examples::
from tensorboardX import SummaryWriter
# create a summary writer with automatically generated folder name.
writer = SummaryWriter()
# folder location: runs/May04_22-14-54_s-MacBook-Pro.local/
# create a summary writer using the specified folder name.
writer = SummaryWriter("my_experiment")
# folder location: my_experiment
# create a summary writer with comment appended.
writer = SummaryWriter(comment="LR_0.1_BATCH_16")
# folder location: runs/May04_22-14-54_s-MacBook-Pro.localLR_0.1_BATCH_16/
"""
if log_dir is not None and logdir is None:
logdir = log_dir
if not logdir:
import socket
from datetime import datetime
current_time = datetime.now().strftime('%b%d_%H-%M-%S')
logdir = os.path.join(
'runs', current_time + '_' + socket.gethostname() + comment)
self.logdir = logdir
self.purge_step = purge_step
self._max_queue = max_queue
self._flush_secs = flush_secs
self._filename_suffix = filename_suffix
self._write_to_disk = write_to_disk
self.kwargs = kwargs
# Initialize the file writers, but they can be cleared out on close
# and recreated later as needed.
self.file_writer = self.all_writers = None
self._get_file_writer()
# Create default bins for histograms, see generate_testdata.py in tensorflow/tensorboard
v = 1E-12
buckets = []
neg_buckets = []
while v < 1E20:
buckets.append(v)
neg_buckets.append(-v)
v *= 1.1
self.default_bins = neg_buckets[::-1] + [0] + buckets
self.scalar_dict = {}
def add_hparams(self, hparam_dict=None, metric_dict=None):
"""Add a set of hyperparameters to be compared in tensorboard.
Args:
hparam_dict (dictionary): Each key-value pair in the dictionary is the
name of the hyper parameter and it's corresponding value.
metric_dict (dictionary): Each key-value pair in the dictionary is the
name of the metric and it's corresponding value. Note that the key used
here should be unique in the tensorboard record. Otherwise the value
you added by `add_scalar` will be displayed in hparam plugin. In most
cases, this is unwanted.
Examples::
from tensorboardX import SummaryWriter
with SummaryWriter() as w:
for i in range(5):
w.add_hparams({'lr': 0.1*i, 'bsize': i},
{'hparam/accuracy': 10*i, 'hparam/loss': 10*i})
Expected result:
.. image:: _static/img/tensorboard/add_hparam.png
:scale: 50 %
"""
if type(hparam_dict) is not dict or type(metric_dict) is not dict:
raise TypeError('hparam_dict and metric_dict should be dictionary.')
exp, ssi, sei = hparams(hparam_dict, metric_dict)
with SummaryWriter(logdir=os.path.join(self.file_writer.get_logdir(), str(time.time()))) as w_hp:
w_hp.file_writer.add_summary(exp)
w_hp.file_writer.add_summary(ssi)
w_hp.file_writer.add_summary(sei)
for k, v in metric_dict.items():
w_hp.add_scalar(k, v)
def add_scalar(self, tag, scalar_value, global_step=None, walltime=None):
"""Add scalar data to summary.
Args:
tag (string): Data identifier
scalar_value (float or string/blobname): Value to save
global_step (int): Global step value to record
walltime (float): Optional override default walltime (time.time()) of event
Examples::
from tensorboardX import SummaryWriter
writer = SummaryWriter()
x = range(100)
for i in x:
writer.add_scalar('y=2x', i * 2, i)
writer.close()
Expected result:
.. image:: _static/img/tensorboard/add_scalar.png
:scale: 50 %
"""
if self._check_caffe2_blob(scalar_value):
scalar_value = workspace.FetchBlob(scalar_value)
self._get_file_writer().add_summary(
scalar(tag, scalar_value), global_step, walltime)
def add_scalars(self, main_tag, tag_scalar_dict, global_step=None, walltime=None):
"""Adds many scalar data to summary.
Note that this function also keeps logged scalars in memory. In extreme case it explodes your RAM.
Args:
main_tag (string): The parent name for the tags
tag_scalar_dict (dict): Key-value pair storing the tag and corresponding values
global_step (int): Global step value to record
walltime (float): Optional override default walltime (time.time()) of event
Examples::
from tensorboardX import SummaryWriter
writer = SummaryWriter()
r = 5
for i in range(100):
writer.add_scalars('run_14h', {'xsinx':i*np.sin(i/r),
'xcosx':i*np.cos(i/r),
'tanx': np.tan(i/r)}, i)
writer.close()
# This call adds three values to the same scalar plot with the tag
# 'run_14h' in TensorBoard's scalar section.
Expected result:
.. image:: _static/img/tensorboard/add_scalars.png
:scale: 50 %
"""
walltime = time.time() if walltime is None else walltime
fw_logdir = self._get_file_writer().get_logdir()
for tag, scalar_value in tag_scalar_dict.items():
fw_tag = fw_logdir + "/" + main_tag + "/" + tag
if fw_tag in self.all_writers.keys():
fw = self.all_writers[fw_tag]
else:
fw = FileWriter(logdir=fw_tag)
self.all_writers[fw_tag] = fw
if self._check_caffe2_blob(scalar_value):
scalar_value = workspace.FetchBlob(scalar_value)
fw.add_summary(scalar(main_tag, scalar_value),
global_step, walltime)
self.__append_to_scalar_dict(
fw_tag, scalar_value, global_step, walltime)
def export_scalars_to_json(self, path):
"""Exports to the given path an ASCII file containing all the scalars written
so far by this instance, with the following format:
{writer_id : [[timestamp, step, value], ...], ...}
The scalars saved by ``add_scalars()`` will be flushed after export.
"""
with open(path, "w") as f:
json.dump(self.scalar_dict, f)
self.scalar_dict = {}
def add_histogram(self, tag, values, global_step=None, bins='tensorflow', walltime=None, max_bins=None):
"""Add histogram to summary.
Args:
tag (string): Data identifier
values (torch.Tensor, numpy.array, or string/blobname): Values to build histogram
global_step (int): Global step value to record
bins (string): One of {'tensorflow','auto', 'fd', ...}. This determines how the bins are made. You can find
other options in: https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html
walltime (float): Optional override default walltime (time.time()) of event
Examples::
from tensorboardX import SummaryWriter
import numpy as np
writer = SummaryWriter()
for i in range(10):
x = np.random.random(1000)
writer.add_histogram('distribution centers', x + i, i)
writer.close()
Expected result:
.. image:: _static/img/tensorboard/add_histogram.png
:scale: 50 %
"""
if self._check_caffe2_blob(values):
values = workspace.FetchBlob(values)
if isinstance(bins, six.string_types) and bins == 'tensorflow':
bins = self.default_bins
self._get_file_writer().add_summary(
histogram(tag, values, bins, max_bins=max_bins), global_step, walltime)
def add_histogram_raw(self, tag, min, max, num, sum, sum_squares,
bucket_limits, bucket_counts, global_step=None,
walltime=None):
"""Adds histogram with raw data.
Args:
tag (string): Data identifier
min (float or int): Min value
max (float or int): Max value
num (int): Number of values
sum (float or int): Sum of all values
sum_squares (float or int): Sum of squares for all values
bucket_limits (torch.Tensor, numpy.array): Upper value per
bucket, note that the bucket_limits returned from `np.histogram`
has one more element. See the comment in the following example.
bucket_counts (torch.Tensor, numpy.array): Number of values per bucket
global_step (int): Global step value to record
walltime (float): Optional override default walltime (time.time()) of event
Examples::
import numpy as np
dummy_data = []
for idx, value in enumerate(range(30)):
dummy_data += [idx + 0.001] * value
values = np.array(dummy_data).astype(float).reshape(-1)
counts, limits = np.histogram(values)
sum_sq = values.dot(values)
with SummaryWriter() as summary_writer:
summary_writer.add_histogram_raw(
tag='hist_dummy_data',
min=values.min(),
max=values.max(),
num=len(values),
sum=values.sum(),
sum_squares=sum_sq,
bucket_limits=limits[1:].tolist(), # <- note here.
bucket_counts=counts.tolist(),
global_step=0)
"""
if len(bucket_limits) != len(bucket_counts):
raise ValueError('len(bucket_limits) != len(bucket_counts), see the document.')
self._get_file_writer().add_summary(
histogram_raw(tag,
min,
max,
num,
sum,
sum_squares,
bucket_limits,
bucket_counts),
global_step,
walltime)
def add_image(self, tag, img_tensor, global_step=None, walltime=None, dataformats='CHW'):
"""Add image data to summary.
Note that this requires the ``pillow`` package.
Args:
tag (string): Data identifier
img_tensor (torch.Tensor, numpy.array, or string/blobname): An `uint8` or `float`
Tensor of shape `[channel, height, width]` where `channel` is 1, 3, or 4.
The elements in img_tensor can either have values in [0, 1] (float32) or [0, 255] (uint8).
Users are responsible to scale the data in the correct range/type.
global_step (int): Global step value to record
walltime (float): Optional override default walltime (time.time()) of event.
dataformats (string): This parameter specifies the meaning of each dimension of the input tensor.
Shape:
img_tensor: Default is :math:`(3, H, W)`. You can use ``torchvision.utils.make_grid()`` to
convert a batch of tensor into 3xHxW format or use ``add_images()`` and let us do the job.
Tensor with :math:`(1, H, W)`, :math:`(H, W)`, :math:`(H, W, 3)` is also suitible as long as
corresponding ``dataformats`` argument is passed. e.g. CHW, HWC, HW.
Examples::
from tensorboardX import SummaryWriter
import numpy as np
img = np.zeros((3, 100, 100))
img[0] = np.arange(0, 10000).reshape(100, 100) / 10000
img[1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000
img_HWC = np.zeros((100, 100, 3))
img_HWC[:, :, 0] = np.arange(0, 10000).reshape(100, 100) / 10000
img_HWC[:, :, 1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000
writer = SummaryWriter()
writer.add_image('my_image', img, 0)
# If you have non-default dimension setting, set the dataformats argument.
writer.add_image('my_image_HWC', img_HWC, 0, dataformats='HWC')
writer.close()
Expected result:
.. image:: _static/img/tensorboard/add_image.png
:scale: 50 %
"""
if self._check_caffe2_blob(img_tensor):
img_tensor = workspace.FetchBlob(img_tensor)
self._get_file_writer().add_summary(
image(tag, img_tensor, dataformats=dataformats), global_step, walltime)
def add_images(self, tag, img_tensor, global_step=None, walltime=None, dataformats='NCHW'):
"""Add batched (4D) image data to summary.
Besides passing 4D (NCHW) tensor, you can also pass a list of tensors of the same size.
In this case, the ``dataformats`` should be `CHW` or `HWC`.
Note that this requires the ``pillow`` package.
Args:
tag (string): Data identifier
img_tensor (torch.Tensor, numpy.array, or string/blobname): Image data
The elements in img_tensor can either have values in [0, 1] (float32) or [0, 255] (uint8).
Users are responsible to scale the data in the correct range/type.
global_step (int): Global step value to record
walltime (float): Optional override default walltime (time.time()) of event
Shape:
img_tensor: Default is :math:`(N, 3, H, W)`. If ``dataformats`` is specified, other shape will be
accepted. e.g. NCHW or NHWC.
Examples::
from tensorboardX import SummaryWriter
import numpy as np
img_batch = np.zeros((16, 3, 100, 100))
for i in range(16):
img_batch[i, 0] = np.arange(0, 10000).reshape(100, 100) / 10000 / 16 * i
img_batch[i, 1] = (1 - np.arange(0, 10000).reshape(100, 100) / 10000) / 16 * i
writer = SummaryWriter()
writer.add_images('my_image_batch', img_batch, 0)
writer.close()
Expected result:
.. image:: _static/img/tensorboard/add_images.png
:scale: 30 %
"""
if self._check_caffe2_blob(img_tensor):
img_tensor = workspace.FetchBlob(img_tensor)
if isinstance(img_tensor, list): # a list of tensors in CHW or HWC
if dataformats.upper() != 'CHW' and dataformats.upper() != 'HWC':
print('A list of image is passed, but the dataformat is neither CHW nor HWC.')
print('Nothing is written.')
return
import torch
try:
img_tensor = torch.stack(img_tensor, 0)
except TypeError as e:
import numpy as np
img_tensor = np.stack(img_tensor, 0)
dataformats = 'N' + dataformats
self._get_file_writer().add_summary(
image(tag, img_tensor, dataformats=dataformats), global_step, walltime)
def add_image_with_boxes(self, tag, img_tensor, box_tensor, global_step=None,
walltime=None, dataformats='CHW', labels=None, **kwargs):
"""Add image and draw bounding boxes on the image.
Args:
tag (string): Data identifier
img_tensor (torch.Tensor, numpy.array, or string/blobname): Image data
box_tensor (torch.Tensor, numpy.array, or string/blobname): Box data (for detected objects)
box should be represented as [x1, y1, x2, y2].
global_step (int): Global step value to record
walltime (float): Optional override default walltime (time.time()) of event
labels (list of string): The strings to be show on each bounding box.
Shape:
img_tensor: Default is :math:`(3, H, W)`. It can be specified with ``dataformats`` argument.
e.g. CHW or HWC
box_tensor: (torch.Tensor, numpy.array, or string/blobname): NX4, where N is the number of
boxes and each 4 elememts in a row represents (xmin, ymin, xmax, ymax).
"""
if self._check_caffe2_blob(img_tensor):
img_tensor = workspace.FetchBlob(img_tensor)
if self._check_caffe2_blob(box_tensor):
box_tensor = workspace.FetchBlob(box_tensor)
if labels is not None:
if isinstance(labels, str):
labels = [labels]
if len(labels) != box_tensor.shape[0]:
logging.warning('Number of labels do not equal to number of box, skip the labels.')
labels = None
self._get_file_writer().add_summary(image_boxes(
tag, img_tensor, box_tensor, dataformats=dataformats, labels=labels, **kwargs), global_step, walltime)
def add_figure(self, tag, figure, global_step=None, close=True, walltime=None):
"""Render matplotlib figure into an image and add it to summary.
Note that this requires the ``matplotlib`` package.
Args:
tag (string): Data identifier
figure (matplotlib.pyplot.figure) or list of figures: Figure or a list of figures
global_step (int): Global step value to record
close (bool): Flag to automatically close the figure
walltime (float): Optional override default walltime (time.time()) of event
"""
if isinstance(figure, list):
self.add_image(tag, figure_to_image(figure, close), global_step, walltime, dataformats='NCHW')
else:
self.add_image(tag, figure_to_image(figure, close), global_step, walltime, dataformats='CHW')
def add_video(self, tag, vid_tensor, global_step=None, fps=4, walltime=None):
"""Add video data to summary.
Note that this requires the ``moviepy`` package.
Args:
tag (string): Data identifier
vid_tensor (torch.Tensor): Video data
global_step (int): Global step value to record
fps (float or int): Frames per second
walltime (float): Optional override default walltime (time.time()) of event
Shape:
vid_tensor: :math:`(N, T, C, H, W)`. The values should lie in [0, 255] for type
`uint8` or [0, 1] for type `float`.
"""
self._get_file_writer().add_summary(
video(tag, vid_tensor, fps), global_step, walltime)
def add_audio(self, tag, snd_tensor, global_step=None, sample_rate=44100, walltime=None):
"""Add audio data to summary.
Args:
tag (string): Data identifier
snd_tensor (torch.Tensor): Sound data
global_step (int): Global step value to record
sample_rate (int): sample rate in Hz
walltime (float): Optional override default walltime (time.time()) of event
Shape:
snd_tensor: :math:`(1, L)`. The values should lie between [-1, 1].
"""
if self._check_caffe2_blob(snd_tensor):
snd_tensor = workspace.FetchBlob(snd_tensor)
self._get_file_writer().add_summary(
audio(tag, snd_tensor, sample_rate=sample_rate), global_step, walltime)
def add_text(self, tag, text_string, global_step=None, walltime=None):
"""Add text data to summary.
Args:
tag (string): Data identifier
text_string (string): String to save
global_step (int): Global step value to record
walltime (float): Optional override default walltime (time.time()) of event
Examples::
writer.add_text('lstm', 'This is an lstm', 0)
writer.add_text('rnn', 'This is an rnn', 10)
"""
self._get_file_writer().add_summary(
text(tag, text_string), global_step, walltime)
def add_graph(self, model, input_to_model=None, verbose=False, **kwargs):
# prohibit second call?
# no, let tensorboard handle it and show its warning message.
"""Add graph data to summary.
Args:
model (torch.nn.Module): Model to draw.
input_to_model (torch.Tensor or list of torch.Tensor): A variable or a tuple of
variables to be fed.
verbose (bool): Whether to print graph structure in console.
omit_useless_nodes (bool): Default to ``true``, which eliminates unused nodes.
operator_export_type (string): One of: ``"ONNX"``, ``"RAW"``. This determines
the optimization level of the graph. If error happens during exporting
the graph, using ``"RAW"`` might help.
"""
if hasattr(model, 'forward'):
# A valid PyTorch model should have a 'forward' method
import torch
from distutils.version import LooseVersion
if LooseVersion(torch.__version__) >= LooseVersion("0.3.1"):
pass
else:
if LooseVersion(torch.__version__) >= LooseVersion("0.3.0"):
print('You are using PyTorch==0.3.0, use add_onnx_graph()')
return
if not hasattr(torch.autograd.Variable, 'grad_fn'):
print('add_graph() only supports PyTorch v0.2.')
return
self._get_file_writer().add_graph(graph(model, input_to_model, verbose, **kwargs))
else:
# Caffe2 models do not have the 'forward' method
from caffe2.proto import caffe2_pb2
from caffe2.python import core
from .caffe2_graph import (
model_to_graph_def, nets_to_graph_def, protos_to_graph_def
)
if isinstance(model, list):
if isinstance(model[0], core.Net):
current_graph = nets_to_graph_def(
model, **kwargs)
elif isinstance(model[0], caffe2_pb2.NetDef):
current_graph = protos_to_graph_def(
model, **kwargs)
else:
# Handles cnn.CNNModelHelper, model_helper.ModelHelper
current_graph = model_to_graph_def(
model, **kwargs)
event = event_pb2.Event(
graph_def=current_graph.SerializeToString())
self._get_file_writer().add_event(event)
def add_embedding(self, mat, metadata=None, label_img=None, global_step=None, tag='default', metadata_header=None):
"""Add embedding projector data to summary.
Args:
mat (torch.Tensor or numpy.array): A matrix which each row is the feature vector of the data point
metadata (list): A list of labels, each element will be convert to string
label_img (torch.Tensor or numpy.array): Images correspond to each data point. Each image should be square.
global_step (int): Global step value to record
tag (string): Name for the embedding
Shape:
mat: :math:`(N, D)`, where N is number of data and D is feature dimension
label_img: :math:`(N, C, H, W)`, where `Height` should be equal to `Width`.
Examples::
import keyword
import torch
meta = []
while len(meta)<100:
meta = meta+keyword.kwlist # get some strings
meta = meta[:100]
for i, v in enumerate(meta):
meta[i] = v+str(i)
label_img = torch.rand(100, 3, 32, 32)
for i in range(100):
label_img[i]*=i/100.0
writer.add_embedding(torch.randn(100, 5), metadata=meta, label_img=label_img)
writer.add_embedding(torch.randn(100, 5), label_img=label_img)
writer.add_embedding(torch.randn(100, 5), metadata=meta)
"""
from .x2num import make_np
mat = make_np(mat)
if global_step is None:
global_step = 0
# clear pbtxt?
# Maybe we should encode the tag so slashes don't trip us up?
# I don't think this will mess us up, but better safe than sorry.
subdir = "%s/%s" % (str(global_step).zfill(5), self._encode(tag))
save_path = os.path.join(self._get_file_writer().get_logdir(), subdir)
try:
os.makedirs(save_path)
except OSError:
print(
'warning: Embedding dir exists, did you set global_step for add_embedding()?')
if metadata is not None:
assert mat.shape[0] == len(
metadata), '#labels should equal with #data points'
make_tsv(metadata, save_path, metadata_header=metadata_header)
if label_img is not None:
assert mat.shape[0] == label_img.shape[0], '#images should equal with #data points'
assert label_img.shape[2] == label_img.shape[3], 'Image should be square, see tensorflow/tensorboard#670'
make_sprite(label_img, save_path)
assert mat.ndim == 2, 'mat should be 2D, where mat.size(0) is the number of data points'
make_mat(mat, save_path)
# new funcion to append to the config file a new embedding
append_pbtxt(metadata, label_img,
self._get_file_writer().get_logdir(), subdir, global_step, tag)
def close(self):
if self.all_writers is None:
return # ignore double close
for writer in self.all_writers.values():
writer.flush()
writer.close()
self.file_writer = self.all_writers = None
def flush(self):
if self.all_writers is None:
return # ignore double close
for writer in self.all_writers.values():
writer.flush()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()