人工神经网络(Artificial Neural Networks)(简称ANN)系统从20 世纪40 年代末诞生至今仅短短半个多世纪,但由于他具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、模式识别、智能控制及系统建模等领域得到越来越广泛的应用。
尤其是基于误差反向传播(Error Back Propagation)算法的多层前馈网络(Multiple-Layer Feedforward Network)(简称BP 网络),可以以任意精度逼近任意的连续函数,所以广泛应用于非线性建模、函数逼近、模式分类等方面。
目标识别是模式识别领域的一项传统的课题,这是因为目标识别不是一个孤立的问题,而是模式识别领域中大多数课题都会遇到的基本问题,并且在不同的课题中,由于具体的条件不同,解决的方法也不尽相同,因而目标识别的研究仍具有理论和实践意义。
这里讨论的是将要识别的目标物体用成像头(红外或可见光等)摄入后形成的图像信号序列送入计算机,用神经网络识别图像的问题。
一、BP 神经网络BP 网络是采用Widrow-Hoff 学习算法和非线性可微转移函数的多层网络。一个典型的BP 网络采用的是梯度下降算法,也就是Widrow-Hoff 算法所规定的。
backpropagation 就是指的为非线性多层网络计算梯度的方法。一个典型的BP 网络结构如图所示。我们将它用向量图表示如下图所示。
其中:对于第k 个模式对,输出层单元的j 的加权输入为该单元的实际输出为而隐含层单元i 的加权输入为该单元的实际输出为函数f 为可微分递减函数其算法描述如下:(1)初始化网络及学习参数,如设置网络初始权矩阵、学习因子等。
(2)提供训练模式,训练网络,直到满足学习要求。(3)前向传播过程:对给定训练模式输入,计算网络的输出模式,并与期望模式比较,若有误差,则执行(4);否则,返回(2)。
(4)后向传播过程:a. 计算同一层单元的误差;b. 修正权值和阈值;c. 返回(2)二、 BP 网络隐层个数的选择对于含有一个隐层的三层BP 网络可以实现输入到输出的任何非线性映射。
增加网络隐层数可以降低误差,提高精度,但同时也使网络复杂化,增加网络的训练时间。误差精度的提高也可以通过增加隐层结点数来实现。一般情况下,应优先考虑增加隐含层的结点数。
三、隐含层神经元个数的选择当用神经网络实现网络映射时,隐含层神经元个数直接影响着神经网络的学习能力和归纳能力。
隐含层神经元数目较少时,网络每次学习的时间较短,但有可能因为学习不足导致网络无法记住全部学习内容;隐含层神经元数目较大时,学习能力增强,网络每次学习的时间较长,网络的存储容量随之变大,导致网络对未知输入的归纳能力下降,因为对隐含层神经元个数的选择尚无理论上的指导,一般凭经验确定。
四、神经网络图像识别系统人工神经网络方法实现模式识别,可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,允许样品有较大的缺损、畸变,神经网络方法的缺点是其模型在不断丰富完善中,目前能识别的模式类还不够多,神经网络方法允许样品有较大的缺损和畸变,其运行速度快,自适应性能好,具有较高的分辨率。
神经网络的图像识别系统是神经网络模式识别系统的一种,原理是一致的。一般神经网络图像识别系统由预处理,特征提取和神经网络分类器组成。预处理就是将原始数据中的无用信息删除,平滑,二值化和进行幅度归一化等。
神经网络图像识别系统中的特征提取部分不一定存在,这样就分为两大类:① 有特征提取部分的:这一类系统实际上是传统方法与神经网络方法技术的结合,这种方法可以充分利用人的经验来获取模式特征以及神经网络分类能力来识别目标图像。
特征提取必须能反应整个图像的特征。但它的抗干扰能力不如第2类。
② 无特征提取部分的:省去特征抽取,整副图像直接作为神经网络的输入,这种方式下,系统的神经网络结构的复杂度大大增加了,输入模式维数的增加导致了网络规模的庞大。
此外,神经网络结构需要完全自己消除模式变形的影响。但是网络的抗干扰性能好,识别率高。当BP 网用于分类时,首先要选择各类的样本进行训练,每类样本的个数要近似相等。
其原因在于一方面防止训练后网络对样本多的类别响应过于敏感,而对样本数少的类别不敏感。另一方面可以大幅度提高训练速度,避免网络陷入局部最小点。
由于BP 网络不具有不变识别的能力,所以要使网络对模式的平移、旋转、伸缩具有不变性,要尽可能选择各种可能情况的样本。
例如要选择不同姿态、不同方位、不同角度、不同背景等有代表性的样本,这样可以保证网络有较高的识别率。
构造神经网络分类器首先要选择适当的网络结构:神经网络分类器的输入就是图像的特征向量;神经网络分类器的输出节点应该是类别数。隐层数要选好,每层神经元数要合适,目前有很多采用一层隐层的网络结构。
然后要选择适当的学习算法,这样才会有很好的识别效果。
在学习阶段应该用大量的样本进行训练学习,通过样本的大量学习对神经网络的各层网络的连接权值进行修正,使其对样本有正确的识别结果,这就像人记数字一样,网络中的神经元就像是人脑细胞,权值的改变就像是人脑细胞的相互作用的改变,神经网络在样本学习中就像人记数字一样,学习样本时的网络权值调整就相当于人记住各个数字的形象,网络权值就是网络记住的内容,网络学习阶段就像人由不认识数字到认识数字反复学习过程是一样的。
神经网络是按整个特征向量的整体来记忆图像的,只要大多数特征符合曾学习过的样本就可识别为同一类别,所以当样本存在较大噪声时神经网络分类器仍可正确识别。
在图像识别阶段,只要将图像的点阵向量作为神经网络分类器的输入,经过网络的计算,分类器的输出就是识别结果。五、仿真实验1、实验对象本实验用MATLAB 完成了对神经网络的训练和图像识别模拟。
从实验数据库中选择0~9 这十个数字的BMP 格式的目标图像。图像大小为16×8 像素,每个目标图像分别加10%、20%、30%、40%、50%大小的随机噪声,共产生60 个图像样本。
将样本分为两个部分,一部分用于训练,另一部分用于测试。实验中用于训练的样本为40个,用于测试的样本为20 个。随机噪声调用函数randn(m,n)产生。
2、网络结构本试验采用三层的BP 网络,输入层神经元个数等于样本图像的象素个数16×8 个。隐含层选24 个神经元,这是在试验中试出的较理想的隐层结点数。
输出层神经元个数就是要识别的模式数目,此例中有10 个模式,所以输出层神经元选择10 个,10 个神经元与10 个模式一一对应。
3、基于MATLAB 语言的网络训练与仿真建立并初始化网络% ================S1 = 24;% 隐层神经元数目S1 选为24[R,Q] = size(numdata);[S2,Q] = size(targets);F = numdata;P=double(F);net = newff(minmax(P),[S1 S2],{'logsig''logsig'},'traingda','learngdm')这里numdata 为训练样本矩阵,大小为128×40, targets 为对应的目标输出矩阵,大小为10×40。
newff(PR,[S1 S2…SN],{TF1 TF2…TFN},BTF,BLF,PF)为MATLAB 函数库中建立一个N 层前向BP 网络的函数,函数的自变量PR 表示网络输入矢量取值范围的矩阵[Pmin max];S1~SN 为各层神经元的个数;TF1~TFN 用于指定各层神经元的传递函数;BTF 用于指定网络的训练函数;BLF 用于指定权值和阀值的学习函数;PF 用于指定网络的性能函数,缺省值为‘mse’。
设置训练参数net.performFcn = 'sse'; %平方和误差性能函数 = 0.1; %平方和误差目标 = 20; %进程显示频率net.trainParam.epochs = 5000;%最大训练步数 = 0.95; %动量常数网络训练net=init(net);%初始化网络[net,tr] = train(net,P,T);%网络训练对训练好的网络进行仿真D=sim(net,P);A = sim(net,B);B 为测试样本向量集,128×20 的点阵。
D 为网络对训练样本的识别结果,A 为测试样本的网络识别结果。实验结果表明:网络对训练样本和对测试样本的识别率均为100%。如图为64579五个数字添加50%随机噪声后网络的识别结果。
六、总结从上述的试验中已经可以看出,采用神经网络识别是切实可行的,给出的例子只是简单的数字识别实验,要想在网络模式下识别复杂的目标图像则需要降低网络规模,增加识别能力,原理是一样的。
谷歌人工智能写作项目:神经网络伪原创
神经网络实现图像识别的过程很复杂写作猫。但是大概过程很容易理解。我也是节选一篇图像识别技术的文章,大概说一下。图像识别技术主要是通过卷积神经网络来实现的。
这种神经网络的优势在于,它利用了“同一图像中相邻像素的强关联性和强相似度”这一原理。具体而言就是,在一张图像中的两个相邻像素,比图像中两个分开的像素更具有关联性。
但是,在一个常规的神经网络中,每个像素都被连接到了单独的神经元。这样一来,计算负担自然加重了。卷积神经网络通过削减许多不必要的连接来解决图像识别技术中的这一问题。
运用图像识别技术中的术语来说就是,卷积神经网络按照关联程度筛选不必要的连接,进而使图像识别过程在计算上更具有可操作性。
卷积神经网络有意地限制了图像识别时候的连接,让一个神经元只接受来自之前图层的小分段的输入(假设是3×3或5×5像素),避免了过重的计算负担。因此,每一个神经元只需要负责处理图像的一小部分。
大大加快了速度和准确率。
卷积神经网络在实施的过程中,实际上是分为两层,一个是卷积层,一个是汇聚层,简单理解就是卷积层将图片分散成一个一个或者3*3/5*5的小像素块,然后把这些输出值排列在图组中,用数字表示照片中各个区域的内容,数轴分别代表高度、宽度和颜色。
那么,我们就得到了每一个图块的三维数值表达。汇聚层是将这个三维(或是四维)图组的空间维度与采样函数结合起来,输出一个仅包含了图像中相对重要的部分的联合数组。
这一联合数组不仅能使卷积神经网络计算负担最小化,还能有效避免过度拟合的问题。以上大概就是使用卷积神经网络进行图像识别的过程。
具体可以关注ATYUN人工智能平台的文章:揭秘图像识别技术,机器如何利用卷积神经网络“看见”这个世界。
在电脑图片中将图片识别出来的方法很简单,只需要一个OCR文字识别软件,然后会去操作就可以了,以下是识别的步骤,大家可以参考一下:使用工具:迅捷OCR文字识别软件,搜素迅捷办公找到。
步骤一:在软件上方选择图片局部识别,进入版块后,点击添加文件按钮将需要识别的图片添加进来。步骤二:图片添加进来后,在页面的左下角可以修改识别后的文件的“输出目录”。
步骤三:输出目录修改好后,点击图片下方的第二个小工具在图片上框选出想要识别的文字范围,框选完软件就会自动去识别了。
步骤四:图片文字识别出来会显示在右边方框,觉得没什么问题的话就可以点击右下角保存为TXT了,这样整个步骤就完成了。希望以上的方法能够解决到你的问题。
OCR是模式识别的一个领域,所以整体过程也就是模式识别的过程。其过程整体来说可以分为以下几个步骤:预处理:对包含文字的图像进行处理以便后续进行特征提取、学习。
这个过程的主要目的是减少图像中的无用信息,以便方便后面的处理。在这个步骤通常有:灰度化(彩色图像)、降噪、二值化、字符切分以及归一化等。
经过二值化后,图像只剩下两种颜色,即黑和白,其中一个是图像背景,另一个颜色就是要识别的文字了。降噪在这个阶段非常重要,降噪算法的好坏对特征提取的影响很大。
字符切分则是将图像中的文字分割成单个文字(识别过程是安字符识别)。如果文字行有倾斜的话往往还要进行倾斜校正。归一化则是将单个的文字图像规整到同样的尺寸,在同一个规格下,才能应用统一的算法。
特征提取和降维:特征是用来识别文字的关键信息,每个不同的文字都能通过特征来和其他文字进行区分。对于数字和英文字母来说,这个特征提取是比较容易的,因为数字只有10个,英文字母只有52个,都是小字符集。
对于汉字来说,特征提取比较困难,因为首先汉字是大字符集,国标中光是最常用的第一级汉字就有3755个;第二个汉字结构复杂,形近字多。
在确定了使用何种特征后,视情况而定,还有可能要进行特征降维,这种情况就是如果特征的维数太高(特征一般用一个向量表示,维数即该向量的分量数),分类器的效率会受到很大的影响,为了提高识别速率,往往就要进行降维,这个过程也很重要,既要降低维数吧,又得使得减少维数后的特征向量还保留了足够的信息量(以区分不同的文字)。
分类器设计、训练和实际识别:分类器是用来进行识别的,就是对于第二步,你对一个文字图像,提取出特征给,丢给分类器,分类器就对其进行分类,告诉你这个特征该识别成哪个文字。
在进行实际识别前,往往还要对分类器进行训练,这是一个监督学习的案例。成熟的分类器也很多,什么svm,kn,神经网络etc。
后处理:后处理是用来对分类结果进行优化的,第一个,分类器的分类有时候不一定是完全正确的(实际上也做不到完全正确),比如对汉字的识别,由于汉字中形近字的存在,很容易将一个字识别成其形近字。
后处理中可以去解决这个问题,比如通过语言模型来进行校正——如果分类器将“在哪里”识别成“存哪里”,通过语言模型会发现“存哪里”是错误的,然后进行校正。
第二个,OCR的识别图像往往是有大量文字的,而且这些文字存在排版、字体大小等复杂情况,后处理中可以尝试去对识别结果进行格式化,比如按照图像中的排版排列什么的,举个栗子,一张图像,其左半部分的文字和右半部分的文字毫无关系,而在字符切分过程中,往往是按行切分的,那么识别结果中左半部分的第一行后面会跟着右半部分的第一行诸如此类。
用OCR软件 OCR的概念是在1929年由德国科学家Tausheck最先提出来的,后来美国科学家Handel也提出了利用技术对文字进行识别的想法。
而最早对印刷体汉字识别进行研究的是IBM公司的Casey和Nagy,1966年他们发表了第一篇关于汉字识别的文章,采用了模板匹配法识别了1000个印刷体汉字。
早在60、70年代,世界各国就开始有OCR的研究,而研究的初期,多以文字的识别方法研究为主,且识别的文字仅为0至9的数字。
以同样拥有方块文字的日本为例,1960年左右开始研究OCR的基本识别理论,初期以数字为对象,直至1965至1970年之间开始有一些简单的产品,如印刷文字的邮政编码识别系统,识别邮件上的邮政编码,帮助邮局作区域分信的作业;也因此至今邮政编码一直是各国所倡导的地址书写方式。
20世纪70年代初,日本的学者开始研究汉字识别,并做了大量的工作。
中国在OCR技术方面的研究工作起步较晚,在70年代才开始对数字、英文字母及符号的识别进行研究,70年代末开始进行汉字识别的研究,到1986年汉字识别的研究进入一个实质性的阶段,不少研究单位相继推出了中文OCR产品.早期的OCR软件,由于识别率及产品化等多方面的因素,未能达到实际要求。
同时,由于硬件设备成本高,运行速度慢,也没有达到实用的程度。只有个别部门,如信息部门、新闻出版单位等使用OCR软件。
1986年以后我国的OCR研究有了很大进展,在汉字建模和识别方法上都有所创新,在系统研制和开发应用中都取得了丰硕的成果,不少单位相继推出了中文OCR产品。
进入20世纪90年代以后,随着平台式扫描仪的广泛应用,以及我国信息自动化和办公自动化的普及,大大推动了OCR技术的进一步发展,使OCR的识别正确率、识别速度满足了广大用户的要求一个OCR识别系统,其目的很简单,只是要把影像作一个转换,使影像内的图形继续保存、有表格则表格内资料及影像内的文字,一律变成计算机文字,使能达到影像资料的储存量减少、识别出的文字可再使用及分析,当然也可节省因键盘输入的人力与时间。
从影像到结果输出,须经过影像输入、影像前处理、文字特征抽取、比对识别、最后经人工校正将认错的文字更正,将结果输出。
配套软件 OCR-全能图文互转特别版V10.08-PDFocrjlkuo及模块 VBBS ebs keyvbjoip - 10.09影像输入欲经过OCR处理的标的物须透过光学仪器,如影像扫描仪、传真机或任何摄影器材,将影像转入计算机。
科技的进步,扫描仪等的输入装置已制作的愈来愈精致,轻薄短小、品质也高,对OCR有相当大的帮助,扫描仪的分辨率使影像更清晰、扫除速度更增进OCR处理的效率。
影像前处理:影像前处理是OCR系统中,须解决问题最多的一个模块,从得到一个不是黑就是白的二值化影像,或灰阶、彩色的影像,到独立出一个个的文字影像的过程,都属于影像前处理。
包含了影像正规化、去除噪声、影像矫正等的影像处理,及图文分析、文字行与字分离的文件前处理。
在影像处理方面,在学理及技术方面都已达成熟阶段,因此在市面上或网站上有不少可用的链接库;在文件前处理方面,则凭各家本领了;影像须先将图片、表格及文字区域分离出来,甚至可将文章的编排方向、文章的提纲及内容主体区分开,而文字的大小及文字的字体亦可如原始文件一样的判断出来。
文字特征抽取:单以识别率而言,特征抽取可说是 OCR的核心,用什么特征、怎么抽取,直接影响识别的好坏,也所以在OCR研究初期,特征抽取的研究报告特别的多。
而特征可说是识别的筹码,简易的区分可分为两类:一为统计的特征,如文字区域内的黑/白点数比,当文字区分成好几个区域时,这一个个区域黑/白点数比之联合,就成了空间的一个数值向量,在比对时,基本的数学理论就足以应付了。
而另一类特征为结构的特征,如文字影像细线化后,取得字的笔划端点、交叉点之数量及位置,或以笔划段为特征,配合特殊的比对方法,进行比对,市面上的线上手写输入软件的识别方法多以此种结构的方法为主。
对比数据库:当输入文字算完特征后,不管是用统计或结构的特征,都须有一比对数据库或特征数据库来进行比对,数据库的内容应包含所有欲识别的字集文字,根据与输入文字一样的特征抽取方法所得的特征群组。
对比识别这是可充分发挥数学运算理论的一个模块,根据不同的特征特性,选用不同的数学距离函数,较有名的比对方法有,欧式空间的比对方法、松弛比对法(Relaxation)、动态程序比对法(Dynamic Programming,DP),以及类神经网络的数据库建立及比对、HMM(Hidden Markov Model)…等著名的方法,为了使识别的结果更稳定,也有所谓的专家系统(Experts System)被提出,利用各种特征比对方法的相异互补性,使识别出的结果,其信心度特别的高。
字词后处理:由于OCR的识别率并无法达到百分之百,或想加强比对的正确性及信心值,一些除错或甚至帮忙更正的功能,也成为OCR系统中必要的一个模块。
字词后处理就是一例,利用比对后的识别文字与其可能的相似候选字群中,根据前后的识别文字找出最合乎逻辑的词,做更正的功能。 字词数据库:为字词后处理所建立的词库。
人工校正OCR最后的关卡,在此之前,使用者可能只是拿支鼠标,跟着软件设计的节奏操作或仅是观看,而在此有可能须特别花使用者的精神及时间,去更正甚至找寻可能是OCR出错的地方。
一个好的OCR软件,除了有一个稳定的影像处理及识别核心,以降低错误率外,人工校正的操作流程及其功能,亦影响OCR的处理效率,因此,文字影像与识别文字的对照,及其屏幕信息摆放的位置、还有每一识别文字的候选字功能、拒认字的功能、及字词后处理后特意标示出可能有问题的字词,都是为使用者设计尽量少使用键盘的一种功能,当然,不是说系统没显示出的文字就一定正确,就像完全由键盘输入的工作人员也会有出错的时候,这时要重新校正一次或能允许些许的错,就完全看使用单位的需求了。
结果输出有人只要文本文件作部份文字的再使用之用,所以只要一般的文字文件、有人要漂漂亮亮的和输入文件一模一样,所以有原文重现的功能、有人注重表格内的文字,所以要和Excel等软件结合。
无论怎么变化,都只是输出档案格式的变化而已。如果需要还原成原文一样格式,则在识别后,需要人工排版,耗时耗力。
1. 神经元个数的设计:第二层就比第一层少一半的神经元,基本没有起到压缩维度的作用。
这个问题中的图像比较简单,觉得压缩到20-50维左右比较合适;2. 既然是一个分类问题,顶层的至少还得有一个分类器吧。。。通常用softmax就行了,比较简单,求解也容易。
当然别的分类器,SVM,Random Forest都可以。另外,建议图像问题最好神经网的层数多一些,这个问题至少有两个隐层效果会比较的好。