Tensorflow的基本使用方法

基本使用

使用 TensorFlow, 你必须明白 TensorFlow:

  • 使用图 (graph) 来表示计算任务。
  • 在被称之为 会话 (Session) 的上下文 (context) 中执行图。
  • 使用 tensor 表示数据。
  • 通过 变量 (Variable) 维护状态。
  • 使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据。

综述

  • TensorFlow 是一个编程系统, 使用图来表示计算任务。图中的节点被称之为 op (operation 的缩写)。一个 op 获得 0 个或多个 Tensor, 执行计算,产生 0 个或多个 Tensor。每个 Tensor 是一个类型化的多维数组。 例如。 你可以将一小组图像集表示为一个四维浮点数数组, 这四个维度分别是 [batch, height, width, channels]。
  • 一个TensorFlow 图描述了计算的过程。 为了进行计算,图必须在会话里被启动。会话将图的op分发到诸如CPU或GPU之类的 设备上,同时提供执行 op 的方法。这些方法执行后, 将产生的 tensor返回。在Python语言中,返回的tensor是numpy ndarray对象; 在C和C++语言中,返回的tensor是tensorflow::Tensor实例。

计算图

  • TensorFlow程序通常被组织成一个构建阶段和一个执行阶段。在构建阶段,op的执行步骤被描述成一个图。在执行阶段,使用会话执行执行图中的op。TensorFlow 支持 C, C++, Python 编程语言。三种语言的会话库 (session libraries) 是一致的。

构建图

import tensorflow as tf

# 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点
# 加到默认图中.
#
# 构造器的返回值代表该常量 op 的返回值.
matrix1 = tf.constant([[3., 3.]])

# 创建另外一个常量 op, 产生一个 2x1 矩阵.
matrix2 = tf.constant([[2.],[2.]])

# 创建一个矩阵乘法 matmul op , 把 'matrix1' 和 'matrix2' 作为输入.
# 返回值 'product' 代表矩阵乘法的结果.
product = tf.matmul(matrix1, matrix2)

默认图现在有三个节点,两个 constant() op,和一个matmul() op。 为了真正进行矩阵相乘运算, 并得到矩阵乘法的结果,你必须在会话里启动这个图。

在一个会话中启动图

构造阶段完成后,才能启动图。启动图的第一步是创建一个Session对象,如果无任何创建参数,会话构造器将启动默认图。

# 启动默认图.
sess = tf.Session()

# 调用 sess 的 'run()' 方法来执行矩阵乘法 op, 传入 'product' 作为该方法的参数. 
# 上面提到, 'product' 代表了矩阵乘法 op 的输出, 传入它是向方法表明, 我们希望取回
# 矩阵乘法 op 的输出.
#
# 整个执行过程是自动化的, 会话负责传递 op 所需的全部输入. op 通常是并发执行的.
# 
# 函数调用 'run(product)' 触发了图中三个 op (两个常量 op 和一个矩阵乘法 op) 的执行.
#
# 返回值 'result' 是一个 numpy `ndarray` 对象.
result = sess.run(product)
print result
# ==> [[ 12.]]

# 任务完成, 关闭会话.
sess.close()

Session对象在使用完后需要关闭以释放资源。除了显式调用 close 外,也可以使用 “with” 代码块来自动完成关闭动作。

with tf.Session() as sess:
  result = sess.run([product])
  print result

Tensor

TensorFlow程序使用tensor数据结构来代表所有的数据,计算图中, 操作间传递的数据都是 tensor。你可以把 TensorFlow tensor 看作是一个n维的数组或列表一个tensor包含一个静态类型rank,和一个 shape。

变量

变量维护图执行过程中的状态信息,下面的例子演示了如何使用变量实现一个简单的计数器。

# 创建一个变量, 初始化为标量 0.
state = tf.Variable(0, name="counter")

# 创建一个 op, 其作用是使 state 增加 1

one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)

# 启动图后, 变量必须先经过`初始化` (init) op 初始化,
# 首先必须增加一个`初始化` op 到图中.
init_op = tf.initialize_all_variables()

# 启动图, 运行 op
with tf.Session() as sess:
  # 运行 'init' op
  sess.run(init_op)
  # 打印 'state' 的初始值
  print sess.run(state)
  # 运行 op, 更新 'state', 并打印 'state'
  for _ in range(3):
    sess.run(update)
    print sess.run(state)

# 输出:

# 0
# 1
# 2
# 3

代码中assign()操作是图所描绘的表达式的一部分,正如add()操作一样。所以在调用run()执行表达式之前,它并不会真正执行赋值操作。

Feed

feed使用一个 tensor值临时替换一个操作的输出结果。你可以提供feed数据作为run()调用的参数。feed只在调用它的方法内有效,方法结束,feed 就会消失。最常见的用例是将某些特殊的操作指定为"feed"操作,标记的方法是使用 tf.placeholder() 为这些操作创建占位符。

input1 = tf.placeholder(tf.types.float32)
input2 = tf.placeholder(tf.types.float32)
output = tf.mul(input1, input2)

with tf.Session() as sess:
  print sess.run([output], feed_dict={input1:[7.], input2:[2.]})

# 输出:
# [array([ 14.], dtype=float32)]

Fetch

为了取回操作的输出内容,可以在使用Session对象的run()调用 执行图时,传入一些 tensor,这些 tensor 会帮助你取回结果。在之前的例子里, 我们只取回了单个节点 state,但是你也可以取回多个tensor:

input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)
intermed = tf.add(input2, input3)
mul = tf.mul(input1, intermed)

with tf.Session():
  result = sess.run([mul, intermed])
  print result

# 输出:
# [array([ 21.], dtype=float32), array([ 7.], dtype=float32)]

需要获取的多个tensor值,在op的一次运行中一起获得(而不是逐个去获取 tensor)。

参考链接:http://tensorfly.cn/tfdoc/get_started/basic_usage.html

你可能感兴趣的:(tensorflow,tensorflow)