- 深入理解 OTSU 算法(大津法——最大类间方差法)
ZHauLee
机器学习算法计算机视觉人工智能
一、算法概述OTSU算法是一种用于图像分割的自动阈值选择算法,广泛应用于图像处理领域,特别是在二值化过程中。它是由日本学者大津展之(NobuyukiOtsu)在1979年提出,因此得名“OTSU算法”。二、算法原理OTSU算法的核心思想是通过遍历所有可能的阈值,将图像分割为前景(目标)和背景两部分,使得这两部分之间的类内方差(intra-classvariance)最小,或者说使得这两部分之间的类
- otsu算法_OTSU(大津法最大类间方差法)
weixin_39996742
otsu算法
OTSU基本介绍OTSU是一种确定图像二值化分割阈值的算法,由日本学者大津于1979年提出,被誉为是图像分割中全局阈值选择的最佳方法。OTSU按照图像的灰度特性,将图像分成前景和背景两部分。因为方差可以看成是灰度分布均匀的一种度量,故前景和背景之间的类间方差越大,说明构成图像两部分的差别越大,当部分前景错分为背景或者部分背景被错分为前景时,都会导致两部分的差别变小。使用类间方差最大的分割一位置错分
- Vue动态组件完全指南:原理、使用场景与最佳实践
北辰alk
前端vuevue.jsjavascript前端
文章目录一、什么是动态组件?核心特性:二、基本使用方式1.基础语法2.组件注册方式3.动态组件生命周期三、六大典型应用场景1.标签页切换系统2.多步骤表单流程3.动态仪表盘4.权限驱动视图5.插件系统集成6.服务端驱动界面四、高级使用技巧1.状态保持方案2.动态Props传递3.异步组件加载4.过渡动画支持五、性能优化策略1.缓存策略对比2.代码分割配置3.内存管理示例六、常见问题解决方案1.组件
- Linux下C方式操作GPIO
大牛攻城狮
c语言Linux操作GPIO/sys/class/gpioMCU操作IO方式
1摘要嵌入式编程中对GPIO的读写操作是最常见的应用的了,这里介绍一种C语言方式操作GPIO,涉及代码,以源代码的形式提供,方便快速嵌入实际项目开发;这种操作GPIO的方法类似MCU,实现一行代码拉高、拉低GPIO,直接一行代码实现IO的读写,其实质是封装了/sys/class/gpio的读写。代码实现了GPIO初始化、读、写等操作,针对Linux下操作GPIO提供了一套标准流程,同时可以应用于多
- Node.js Web 模块详解
froginwe11
开发语言
Node.jsWeb模块详解引言Node.js作为一款流行的JavaScript运行环境,以其高性能、事件驱动和非阻塞I/O模型而闻名。在Node.js中,模块是构建应用程序的基础,也是其强大的关键所在。本文将详细介绍Node.js的Web模块,包括其基本概念、常用模块及其应用。模块的概念在Node.js中,模块是一种组织代码的方式,它将代码分割成独立的、可复用的部分。模块不仅可以减少代码的冗余,
- 验证码识别:使用OCR技术识别图形验证码详解
数据知道
2025年爬虫和逆向教程ocrpython爬虫OCR识别验证码识别图片验证码
文章目录一、基本原理二、所需工具2.1Python环境2.2图像处理库2.3OCR引擎2.4Python接口三、实现步骤3.1获取验证码图像3.2图像预处理3.3使用OCR进行字符识别3.4基本OCR识别样例四、提高识别准确率的方法4.1字符分割4.2使用深度学习模型4.3数据增强4.4集成多个OCR引擎五、实际应用中的注意事项六、总结验证码(CAPTCHA)是一种用于区分人类用户和自动化程序的安
- Python Pandas带多组参数和标签的Snowflake数据库批量数据导出程序
weixin_30777913
pandaspython云计算数据仓库
设计一个基于多个带标签的SnowflakeSQL模板作为配置文件和多组参数的PythonPandas代码程序,实现根据不同的输入参数自动批量地将Snowflake数据库中的数据导出为CSV文件到指定目录上,然后逐个文件压缩为zip文件,标签和多个参数(以“_”分割)为组成导出数据文件名,文件已经存在则覆盖原始文件。需要考虑SQL结果集是大数据量分批数据导出的情况,通过多线程和异步操作来提高程序性能
- Stable Diffusion/DALL-E 3图像生成优化策略
云端源想
stablediffusion
StableDiffusion的最新版本或社区开发的插件,可以补充这些信息以保持内容的时效性。云端源想1.硬件与部署优化(进阶)显存压缩技术使用--medvram或--lowvram启动参数(StableDiffusionWebUI),通过分层加载模型降低显存占用(适合6GB以下显卡)。分块推理(TiledDiffusion):将图像分割为512×512区块,逐块生成后无缝拼接,支持4096×40
- 群体智能优化算法-黄金正余弦优化算法(含Matlab源代码)
EOL_HRZ
算法matlab开发语言群体智能优化优化
摘要黄金正余弦优化算法(GoldenSineAlgorithm,GoldSA)是一种数学启发式算法,基于黄金分割系数(GoldenRatio)以及正余弦函数的随机扰动机制来更新解的位置。该算法通过在迭代过程中不断利用黄金分割比例来调整搜索范围,同时结合正弦与余弦变化,为个体提供多样化的全局搜索与局部微调能力。本文提供了GoldSA的核心思想与完整MATLAB代码,并附上中文详细注释,以帮助读者深入
- C++内存模型和原子操作_第五章_《C++并发编程实战》笔记
郭涤生
c/c++#并发线程c++并发编程
C++内存模型和原子操作1.原子操作与无锁编程2.内存顺序核心概念示例代码3.原子操作的应用:自旋锁核心概念示例代码4.无锁数据结构:无锁栈核心概念示例代码5.多选题目5.多选答案7.设计题目7.设计题目示例答案1.原子操作与无锁编程核心概念原子操作:是不可分割的操作,在执行过程中不会被其他线程中断。C++标准库在头文件中提供了一系列原子类型,如std::atomic、std::atomic等。原
- 笔记:代码随想录算法训练营第35天: 01背包问题 二维、 01背包问题 一维 、LeetCode416. 分割等和子集
jingjingjing1111
算法leetcode数据结构动态规划笔记
学习资料:代码随想录这一块儿学得挺痛苦注:文中含大模型生成内容动态规划:01背包理论基础卡码网第46题思路:五部曲定义:dp[i][j]为第i个物品背包容量为j,能装下的最大价值递推公式:dp[i][j]的值等于dp[i-1][j]的值和dp[i-1][j-weight[i]]+value相比的最大值,后者为看放下当前物品+减去当前物品的容量能放下什么价值,当然,要是放不下当前物品,就算了,保持原
- 面试官:Vue中的过滤器了解吗?过滤器的应用场景有哪些?
动感超人,
过滤器filtervueepolltapestry
一、是什么过滤器(filter)是输送介质管道上不可缺少的一种装置大白话,就是把一些不必要的东西过滤掉过滤器实质不改变原始数据,只是对数据进行加工处理后返回过滤后的数据再进行调用处理,我们也可以理解其为一个纯函数Vue允许你自定义过滤器,可被用于一些常见的文本格式化ps:Vue3中已废弃filter二、如何用vue中的过滤器可以用在两个地方:双花括号插值和v-bind表达式,过滤器应该被添加在Ja
- Java字符串以“.“分割
slient_love
软件开发
今天开发中需要对图片地址进行拼接,使用字符串分割函数split()进行处理,发现数组为空:Stringtemp=image[i];String[]str=temp.split(".");在百度之后发现,需要使用转义字符。测试成功~String[]str=temp.split("\\.");注意哦,在正则表达式中,小数点指的是任意字符,因此不能直接用".“来匹配小数点,需要使用”\\."来匹配小数点
- 【AIGC】计算机视觉-YOLO系列家族
LeeZhao@
计算机视觉AIGC计算机视觉YOLO
YOLO系列家族(1)YOLO发展史(2)YOLOX(3)YOLOv6(4)YOLOv7(5)YOLOv8(6)YOLOv9(7)YOLOv10(8)YOLOv11(9)YOLOv12(1)YOLO发展史YOLO(YouOnlyLookOnce)是一种流行的物体检测和图像分割模型,由华盛顿大学的约瑟夫-雷德蒙(JosephRedmon)和阿里-法哈迪(AliFarhadi)开发。YOLO于2015
- backbone和head分开转onnx的优势
yuweififi
人工智能深度学习机器学习
模型转换为ONNX格式时,将其分成backbone和head两个部分,通常是出于以下原因:1.模块化设计backbone通常是模型的特征提取部分(例如卷积神经网络的主干部分),负责从输入数据中提取高级特征。head是模型的输出部分,负责根据backbone提取的特征生成最终的预测结果(例如分类、检测、分割等)。将模型分成两部分可以实现模块化设计,便于在不同任务中复用backbone或head。例如
- Webpack 优化深度解析:从构建性能到输出优化的全面指南
冬冬小圆帽
webpack前端node.js
Webpack是一个强大的模块打包工具,广泛应用于现代前端开发中。随着项目规模的增大,Webpack的构建速度和输出文件的优化变得尤为重要。1.Webpack优化的核心目标Webpack优化的主要目标包括:减少构建时间:加快开发环境的构建速度,提升开发体验。减小输出文件体积:减少生产环境的资源体积,提升页面加载性能。提升缓存利用率:通过合理的文件哈希和代码分割,提升资源的缓存命中率。提高代码质量:
- 分布式并行策略概述
灵海之森
LLM算法分布式
数据并行(DataParallelism)内容:数据并行通过将训练数据分割成多个小批次,并在多个处理单元(如GPU)上同时训练模型的副本来工作。每个副本完成自己批次的前向和反向传播计算后,梯度被汇总并同步更新到所有模型副本。优势:易于实现和扩展。可以显著减少训练时间,尤其是当模型较小,而数据集较大时。缺点:随着模型大小的增加,每个处理单元需要的内存也增加,可能受限于单个GPU的内存容量。大规模时通
- python基础变量之---字典
暴龙胡乱写博客
python开发语言人工智能
python基础变量之—字典文章目录python基础变量之---字典一、字典1.字典介绍2.字典创建3.字典操作4.元组常用API一、字典1.字典介绍字典是可变容器,可存储任意类型对象字典以键(key)-值(value)对的形式进行映射,键值对用冒号分割,对之间用逗号分割d={key1:value1,key2:value2,key3:value3}字典的数据是无序的字典的键只能用不可变类型,且不能
- python字典模块笔记速查
qq_25737959
python笔记windows
python字典字典存储一系列的键值对:key:valuePython中用{}表示字典,可以使用{}创建一个字典字典中的key和value之间用冒号:分割,元素之间用逗号,分割。字典的key只能为数字、字符串、元组,大多数情况使用字符串作为keyvalue的类型没有限制#创建空字典a={}print("type(a)=",type(a))#type(a)=print("a=",a)#a={}#创建
- 整理:4篇论文介绍实时语义分割的未来,Transformer架构下的性能与效率平衡
mslion
transformer深度学习人工智能语义分割
在Transformer架构推动下,计算机视觉领域致力于打造一个极为强大且通用的大规模模型,它能处理物体检测、图像分割等多种任务。不少基于Transformer架构的研究成果显著,其通用模型在特定应用中表现出色,在图像和视频分割方面,通用设计的研究成果也超越了以往定制模型。其中,分割一切模型(SAM)在交互式分割中表现突出,能统一应对点、边界框、掩码和文本输入等交互方式。然而,多数此类研究存在弊端
- 系统结构知识点
落——枫
系统架构
1.主存和辅存以页面交换数据2.计算机系统=硬件固体+软件3.计算机系统结构概念的实质是确定计算机系统中软,硬件的界面,界面之上是软件实现的功能,界面之下是硬件和固体实现的功能4.计算机组成是指计算机系统结构的逻辑实现。计算机实现是指计算机组成的物理实现。5.计算机系统结构分类法:冯氏分类法和Flynn分类法Flynn分类法是按照指令流和数据流的多重性进行分类。如SISD;SIMD;MISD;MI
- 论文学习:基于机器学习的光声图像分析1
superace7911
基于机器学习的光声图像处理机器学习人工智能图像处理
3/25——3/31期间论文学习笔记,关于基于机器学习的光声图像分析的6篇1区论文血管结构模拟&分割:Quantificationofvascularnetworksinphotoacousticmesoscopy链接数据集链接摘要这篇论文提出了一种新的方法,利用中观光声成像(MesoscopicPhotoacousticImaging,PAI)技术和高级图像分析技术,来非侵入性地定量化和分析活体
- 【Scannet V2 三维数据集下载】
萧伯纳.
python深度学习学习
ScannetV2三维数据下载ScannetV2数据介绍:“ScanNet是一个RGB-D视频数据集,包含2多次扫描中的5万次观看,并带有1500D摄像机姿势、表面重建和实例级语义分割进行注释。为了收集这些数据,我们设计了一个易于使用且可扩展的RGB-D捕获系统,其中包括自动表面重建和众包语义注释。我们表明,使用这些数据有助于在多个3D场景理解任务上实现最先进的性能,包括3D对象分类、语义体素标记
- PyTorch分布式训练
阳光明媚大男孩
pytorch分布式人工智能
本文结构:分布式训练概述环境设置数据并行(DDP)模型并行启动训练性能优化建议示例代码参考资料和相关问题以下是为您整理的PyTorch分布式训练教程指南:一、PyTorch分布式训练核心概念数据并行:通过分割数据集实现多GPU并行训练,主流方法包括:DistributedDataParallel(DDP):官方推荐的分布式训练接口DataParallel(DP):单机多卡方案(已逐步被DDP取代)
- macOS - security 命令
伊织code
Apple开发+securitymacOSkeychain
文章目录简介使用手册:语法如下:子命令列表如下创建钥匙串向钥匙串中添加钥匙(认证实体)删除证书查找认证实体(证书+私钥)本文转载自下面地址,有删减重新排版https://www.cnblogs.com/elesos/p/7093535.html简介Security是Mac系统中钥匙串和安全模块的命令行管理工具,(图形化工具为KeychainAccess.app)。钥匙串(Keychain)实质上就
- 论文摘要生成器:用TextRank算法实现文献关键信息提取
Atlas Shepherd
python算法自然语言处理python信息可视化
我们基于python代码,使用PyQt5创建图形用户界面(GUI),同时支持中英文两种语言的文本论文文献关键信息提取。PyQt5:用于创建GUI应用程序。jieba:中文分词库,用于中文文本的处理。re:正则表达式模块,用于文本清理和句子分割。numpy:提供数值计算能力,如数组操作、矩阵运算等,主要用于TextRank算法的实现。importsysimportreimportjiebaimpor
- 将Labelme标注的数据做成COCO格式的数据集(实例分割的数据集)
一直开心
深度学习计算机视觉
这里说明一下:Labelme标注数据时候是用的多边形框,关于标注,可以看前面的博客文章下面制作的COCO数据集是用于实例分割的数据集。COCO格式数据集的制作1、labelme标注的数据转coco数据集AnacondaPrompt里F:\rockdata下的目录运行指令:这里需要注意是在activatelabelme后,pythonlabelme2coco.pyNoObejectNoObeject
- HTML 基础
磨十三
html前端
一、HTML基本结构页面标题:声明文档类型为HTML5。:根标签,包裹所有HTML内容。:包含元数据(标题、CSS、字符集等)。:页面可见内容的容器。二、基础标签与属性1.文本标签标签说明示例~标题(1级最大,6级最小)主标题段落(自动换行)段落内容水平分割线(单标签)注释2.文本格式化标签效果示例/加粗(推荐用语义化)强调内容/斜体(推荐用语义化)强调文本删除线删除内容下划线下划线内容/上标/下
- 实现一个超轻量级实例分割网络的思路
CV工程师小朱
深度学习笔记深度学习应用实例分割yolactpicodet深度学习
文章目录前言一、基本思路二、picodet三、yolact三、picodet+yolact总结前言在某些工业领域,由于成本问题算力有限,只能实时跑一些超轻量级网络,拿目标检测来说,例如yolo-fast,pp-picodet这些。如果要跑实例分割,目前好像没有什么超轻量级的网络。所以就有想法如何实现一个超轻量级实例分割网络。一、基本思路基于超轻量级目标检测pp-picodet,增加一个掩膜分支。参
- 图像处理与机器视觉
Be_auto
图像处理计算机视觉
1.图像处理与机器视觉的概念图像处理(ImageProcessing)是对图像进行分析、增强、变换等操作以改善图像质量或提取有用信息的过程。它通常涉及数字图像处理技术,包括滤波、边缘检测、图像分割、特征提取等。图像处理的目标可以是增强图像的视觉效果,或者使图像更适合于某种特定的机器分析。详细解释图文处理,就像是给照片和文档“化妆”和“打扮”一样。它可不是简单的涂抹或者穿衣搭配,而是需要掌握一系列“
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s