【Keras】学习笔记5:多分类实例:鸢尾花分类

数据集可以从UCI机器学习仓库下载(http://archive.ics.uci.edu/ml/datasets/Iris)
深度学习中要求数据全部都是数据
下例,数据集具有4个数值型输入项目,输出项目是鸢尾花的3个子类。使用scikit-learn中提供的数据集。
输入层(4个输入)—> 隐藏层(4个神经元)—> 隐藏层(6个神经元)—> 输出层(3个输出)

from sklearn import datasets
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold

# 导入数据
dataset = datasets.load_iris()

x = dataset.data
Y = dataset.target

# 设定随机种子
seed = 7
np.random.seed(seed)

# 构建模型函数
def create_model(optimizer='adam', init='glorot_uniform'):
    # 构建模型    *输入层(4个输入)---> 隐藏层(4个神经元)---> 隐藏层(6个神经元)---> 输出层(3个输出)
    model = Sequential()
    model.add(Dense(units=4, activation='relu', input_dim=4, kernel_initializer=init))
    model.add(Dense(units=6, activation='relu', kernel_initializer=init))
    model.add(Dense(units=3, activation='softmax', kernel_initializer=init))

    # 编译模型
    model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])

    return model

model = KerasClassifier(build_fn=create_model, epochs=200, batch_size=5, verbose=0)
kfold = KFold(n_splits=10, shuffle=True, random_state=seed)
results = cross_val_score(model, x, Y, cv=kfold)
print('Accuracy: %.2f%% (%.2f)' % (results.mean()*100, results.std()))

你可能感兴趣的:(深度学习,神经网络)