Lambda表达式是现代C++在C ++ 11和更高版本中的一个新的语法糖 ,在C++11、C++14、C++17和C++20中Lambda表达的内容还在不断更新。 lambda表达式(也称为lambda函数)是在调用或作为函数参数传递的位置处定义匿名函数对象的便捷方法。通常,lambda用于封装传递给算法或异步方法的几行代码 。本文主要介绍Lambda的工作原理以及使用方法。
Lambda有很多叫法,有Lambda表达式、Lambda函数、匿名函数,本文中为了方便表述统一用Lambda表达式进行叙述。 ISO C++标准官网展示了一个简单的lambda表示式实例:
#include
#include
void abssort(float* x, unsigned n) {
std::sort(x, x + n,
// Lambda expression begins
[](float a, float b) {
return (std::abs(a) < std::abs(b));
} // end of lambda expression
);
}
在上面的实例中std::sort
函数第三个参数应该是传递一个排序规则的函数,但是这个实例中直接将排序函数的实现写在应该传递函数的位置,省去了定义排序函数的过程,对于这种不需要复用,且短小的函数,直接传递函数体可以增加代码的可读性。
[]
是Lambda引出符。编译器根据该引出符判断接下来的代码是否是Lambda函数,捕获列表能够捕捉上下文中的变量以供Lambda函数使用。mutable
修饰符, 默认情况下Lambda函数总是一个const
函数,mutable
可以取消其常量性。在使用该修饰符时,参数列表不可省略(即使参数为空)。Lambda表达式与普通函数最大的区别是,除了可以使用参数以外,Lambda函数还可以通过捕获列表访问一些上下文中的数据。具体地,捕捉列表描述了上下文中哪些数据可以被Lambda使用,以及使用方式(以值传递的方式或引用传递的方式)。语法上,在“[]
”包括起来的是捕获列表,捕获列表由多个捕获项组成,并以逗号分隔。捕获列表有以下几种形式:
[]
表示不捕获任何变量auto function = ([]{
std::cout << "Hello World!" << std::endl;
}
);
function();
[var]
表示值传递方式捕获变量var
int num = 100;
auto function = ([num]{
std::cout << num << std::endl;
}
);
function();
[=]
表示值传递方式捕获所有父作用域的变量(包括this
)int index = 1;
int num = 100;
auto function = ([=]{
std::cout << "index: "<< index << ", "
<< "num: "<< num << std::endl;
}
);
function();
[&var]
表示引用传递捕捉变量var
int num = 100;
auto function = ([&num]{
num = 1000;
std::cout << "num: " << num << std::endl;
}
);
function();
[&]
表示引用传递方式捕捉所有父作用域的变量(包括this
)int index = 1;
int num = 100;
auto function = ([&]{
num = 1000;
index = 2;
std::cout << "index: "<< index << ", "
<< "num: "<< num << std::endl;
}
);
function();
[this]
表示值传递方式捕捉当前的this
指针#include
using namespace std;
class Lambda
{
public:
void sayHello() {
std::cout << "Hello" << std::endl;
};
void lambda() {
auto function = [this]{
this->sayHello();
};
function();
}
};
int main()
{
Lambda demo;
demo.lambda();
}
[=, &]
拷贝与引用混合
[=, &a, &b]
表示以引用传递的方式捕捉变量a
和b
,以值传递方式捕捉其它所有变量。int index = 1;
int num = 100;
auto function = ([=, &index, &num]{
num = 1000;
index = 2;
std::cout << "index: "<< index << ", "
<< "num: "<< num << std::endl;
}
);
function();
[&, a, this]
表示以值传递的方式捕捉变量a
和this
,引用传递方式捕捉其它所有变量。不过值得注意的是,捕捉列表不允许变量重复传递。下面一些例子就是典型的重复,会导致编译时期的错误。例如:
[=,a]
这里已经以值传递方式捕捉了所有变量,但是重复捕捉a
了,会报错的;[&,&this]
这里&
已经以引用传递方式捕捉了所有变量,再捕捉this
也是一种重复。如果Lambda主体total
通过引用访问外部变量,并factor
通过值访问外部变量,则以下捕获子句是等效的:
[&total, factor]
[factor, &total]
[&, factor]
[factor, &]
[=, &total]
[&total, =]
除了捕获列表之外,Lambda还可以接受输入参数。参数列表是可选的,并且在大多数方面类似于函数的参数列表。
auto function = [] (int first, int second){
return first + second;
};
function(100, 200);
mutable
修饰符, 默认情况下Lambda函数总是一个const
函数,mutable
可以取消其常量性。在使用该修饰符时,参数列表不可省略(即使参数为空)。
#include
using namespace std;
int main()
{
int m = 0;
int n = 0;
[&, n] (int a) mutable { m = ++n + a; }(4);
cout << m << endl << n << endl;
}
你可以使用 throw()
异常规范来指示 Lambda 表达式不会引发任何异常。与普通函数一样,如果 Lambda 表达式声明 C4297 异常规范且 Lambda 体引发异常,Visual C++ 编译器将生成警告 throw()
。
int main() // C4297 expected
{
[]() throw() { throw 5; }();
}
在MSDN的异常规范中,明确指出异常规范是在 C++11 中弃用的 C++ 语言功能。因此这里不建议不建议大家使用。
Lambda表达式的返回类型会自动推导。除非你指定了返回类型,否则不必使用关键字。返回型类似于通常的方法或函数的返回型部分。但是,返回类型必须在参数列表之后,并且必须在返回类型->之前包含类型关键字。如果Lambda主体仅包含一个return
语句或该表达式未返回值,则可以省略Lambda表达式的return-type
部分。如果Lambda主体包含一个return
语句,则编译器将从return
表达式的类型中推断出return
类型。否则,编译器将返回类型推导为void
。
auto x1 = [](int i){ return i; };
Lambda表达式的Lambda主体(标准语法中的复合语句)可以包含普通方法或函数的主体可以包含的任何内容。普通函数和Lambda表达式的主体都可以访问以下类型的变量:
this
并被捕获时#include
using namespace std;
int main()
{
int m = 0;
int n = 0;
[&, n] (int a) mutable { m = ++n + a; }(4);
cout << m << endl << n << endl;
}
std::find_if(v.begin(), v.end(), [](int& item){return item > 2});
编译器会把一个Lambda表达式生成一个匿名类的匿名对象,并在类中重载函数调用运算符,实现了一个operator()
方法。
auto print = []{cout << "Hello World!" << endl; };
编译器会把上面这一句翻译为下面的代码:
class print_class
{
public:
void operator()(void) const
{
cout << "Hello World!" << endl;
}
};
// 用构造的类创建对象,print此时就是一个函数对象
auto print = print_class();
仿函数(functor)又称为函数对象(function object)是一个能行使函数功能的类。仿函数的语法几乎和我们普通的函数调用一样,不过作为仿函数的类,都必须重载operator()
运算符,仿函数与Lamdba表达式的作用是一致的。举个例子:
#include
#include
using namespace std;
class Functor
{
public:
void operator() (const string& str) const
{
cout << str << endl;
}
};
int main()
{
Functor myFunctor;
myFunctor("Hello world!");
return 0;
}
for_each
应用实例int a[4] = {11, 2, 33, 4};
sort(a, a+4, [=](int x, int y) -> bool { return x%10 < y%10; } );
for_each(a, a+4, [=](int x) { cout << x << " ";} );
find_if
应用实例int x = 5;
int y = 10;
deque<int> coll = { 1, 3, 19, 5, 13, 7, 11, 2, 17 };
auto pos = find_if(coll.cbegin(), coll.cend(), [=](int i) {
return i > x && i < y;
});
remove_if
应用实例std::vector<int> vec_data = {1, 2, 3, 4, 5, 6, 7, 8, 9};
int x = 5;
vec_data.erase(std::remove_if(vec.date.begin(), vec_data.end(), [](int i) {
return n < x;}), vec_data.end());
std::for_each(vec.date.begin(), vec_data.end(), [](int i) {
std::cout << i << std::endl;});
sort
函数#include
#include
#include
using namespace std;
int main(void)
{
int data[6] = { 3, 4, 12, 2, 1, 6 };
vector<int> testdata;
testdata.insert(testdata.begin(), data, data + 6);
// 对于比较大小的逻辑,使用lamdba不需要在重新定义一个函数
sort(testdata.begin(), testdata.end(), [](int a, int b){
return a > b; });
return 0;
}
#include
#include
#include
#include
int main()
{
// vector 容器存储线程
std::vector<std::thread> workers;
for (int i = 0; i < 5; i++)
{
workers.push_back(std::thread([]()
{
std::cout << "thread function\n";
}));
}
std::cout << "main thread\n";
// 通过 for_each 循环每一个线程
// 第三个参数赋值一个task任务
// 符号'[]'会告诉编译器我们正在用一个匿名函数
// lambda函数将它的参数作为线程的引用t
// 然后一个一个的join
std::for_each(workers.begin(), workers.end(), [](std::thread &t;)
{
t.join();
});
return 0;
}
std::mutex mutex;
std::condition_variable condition;
std::queue<std::string> queue_data;
std::thread threadBody([&]{
std::unique_lock<std::mutex> lock_log(mutex);
condition.wait(lock_log, [&]{
return !queue_data.front();
});
std::cout << "queue data: " << queue_data.front();
lock_log.unlock();
});
queue_data.push("this is my data");
condition.notity_one();
if(threadBody.joinable())
{
threadBody.join();
}
#include
#include
using namespace std;
int main(void)
{
int x = 8, y = 9;
auto add = [](int a, int b) { return a + b; };
std::function<int(int, int)> Add = [=](int a, int b) { return a + b; };
cout << "add: " << add(x, y) << endl;
cout << "Add: " << Add(x, y) << endl;
return 0;
}
using FuncCallback = std::function<void(void)>;
void DataCallback(FuncCallback callback)
{
std::cout << "Start FuncCallback!" << std::endl;
callback();
std::cout << "End FuncCallback!" << std::endl;
}
auto callback_handler = [&](){
std::cout << "This is callback_handler";
};
DataCallback(callback_handler);
QTimer *timer=new QTimer;
timer->start(1000);
QObject::connect(timer, &QTimer::timeout, [&](){
qDebug() << "Lambda表达式";
});
int a = 10;
QString str1 = "汉字博大精深";
connect(pBtn4, &QPushButton::clicked, [=](bool checked){
qDebug() << a <<str1;
qDebug() << checked;
qDebug() << "Hua Windows Lambda Button";
});
对于Lambda这种新东西,有的人用的非常爽,而有的人看着都不爽。仁者见仁,智者见智。不管怎么样,学了总不会错!