视觉里程计3(SLAM十四讲ch7)-PnP

PnP 3D2D

PnP问题

  • PnP为 Perspective-n-Point的简称,是求解3D到2D点对的运动的方法:即给出n个3D空间点及其投影位置时,如何求解相机的位姿
  • 典型的PnP问题求解方式有很多种,例如P3P, 直接线性变换(DLT), EPnP(Efficient PnP), UPnP。还有非线性的Bundle Adjustment.

视觉里程计3(SLAM十四讲ch7)-PnP_第1张图片

直接线性变换(DLT)

视觉里程计3(SLAM十四讲ch7)-PnP_第2张图片

视觉里程计3(SLAM十四讲ch7)-PnP_第3张图片

视觉里程计3(SLAM十四讲ch7)-PnP_第4张图片

P3P

视觉里程计3(SLAM十四讲ch7)-PnP_第5张图片

视觉里程计3(SLAM十四讲ch7)-PnP_第6张图片

视觉里程计3(SLAM十四讲ch7)-PnP_第7张图片

视觉里程计3(SLAM十四讲ch7)-PnP_第8张图片

视觉里程计3(SLAM十四讲ch7)-PnP_第9张图片

BA

视觉里程计3(SLAM十四讲ch7)-PnP_第10张图片

实践

使用OpenCV中的EPnP求解PnP问题,然后通过g2o对结果进行优化。使用RGB-D中的深度图作为特征点的3D位置。

在得到配对特征点后,在第一个图的深度图中寻找他们的深度,并求出空间位置。以此空间位置为3D点,再以第二个图的像素位置为2D点,调用EPnP求解PnP问题。

pose_estimation_3d2d

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

using namespace std;
using namespace cv;

void find_feature_matches (
    const Mat& img_1, const Mat& img_2,
    std::vector& keypoints_1,
    std::vector& keypoints_2,
    std::vector< DMatch >& matches );

// 像素坐标转相机归一化坐标
Point2d pixel2cam ( const Point2d& p, const Mat& K );

void bundleAdjustment (
    const vector points_3d,
    const vector points_2d,
    const Mat& K,
    Mat& R, Mat& t
);

int main ( int argc, char** argv )
{
    if ( argc != 5 )
    {
        cout<<"usage: pose_estimation_3d2d img1 img2 depth1 depth2"< keypoints_1, keypoints_2;
    vector matches;
    find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );
    cout<<"一共找到了"< ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
    vector pts_3d;
    vector pts_2d;
    for ( DMatch m:matches )
    {
        ushort d = d1.ptr (int ( keypoints_1[m.queryIdx].pt.y )) [ int ( keypoints_1[m.queryIdx].pt.x ) ];
        if ( d == 0 )   // bad depth
            continue;
        float dd = d/5000.0;
        Point2d p1 = pixel2cam ( keypoints_1[m.queryIdx].pt, K );
        pts_3d.push_back ( Point3f ( p1.x*dd, p1.y*dd, dd ) );
        pts_2d.push_back ( keypoints_2[m.trainIdx].pt );
    }

    cout<<"3d-2d pairs: "<& keypoints_1,
                            std::vector& keypoints_2,
                            std::vector< DMatch >& matches )
{
    //-- 初始化
    Mat descriptors_1, descriptors_2;
    // used in OpenCV3
    Ptr detector = ORB::create();
    Ptr descriptor = ORB::create();
    // use this if you are in OpenCV2
    // Ptr detector = FeatureDetector::create ( "ORB" );
    // Ptr descriptor = DescriptorExtractor::create ( "ORB" );
    Ptr matcher  = DescriptorMatcher::create ( "BruteForce-Hamming" );
    //-- 第一步:检测 Oriented FAST 角点位置
    detector->detect ( img_1,keypoints_1 );
    detector->detect ( img_2,keypoints_2 );

    //-- 第二步:根据角点位置计算 BRIEF 描述子
    descriptor->compute ( img_1, keypoints_1, descriptors_1 );
    descriptor->compute ( img_2, keypoints_2, descriptors_2 );

    //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
    vector match;
    // BFMatcher matcher ( NORM_HAMMING );
    matcher->match ( descriptors_1, descriptors_2, match );

    //-- 第四步:匹配点对筛选
    double min_dist=10000, max_dist=0;

    //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
    for ( int i = 0; i < descriptors_1.rows; i++ )
    {
        double dist = match[i].distance;
        if ( dist < min_dist ) min_dist = dist;
        if ( dist > max_dist ) max_dist = dist;
    }

    printf ( "-- Max dist : %f \n", max_dist );
    printf ( "-- Min dist : %f \n", min_dist );

    //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
    for ( int i = 0; i < descriptors_1.rows; i++ )
    {
        if ( match[i].distance <= max ( 2*min_dist, 30.0 ) )
        {
            matches.push_back ( match[i] );
        }
    }
}

Point2d pixel2cam ( const Point2d& p, const Mat& K )
{
    return Point2d
           (
               ( p.x - K.at ( 0,2 ) ) / K.at ( 0,0 ),
               ( p.y - K.at ( 1,2 ) ) / K.at ( 1,1 )
           );
}

void bundleAdjustment (
    const vector< Point3f > points_3d,
    const vector< Point2f > points_2d,
    const Mat& K,
    Mat& R, Mat& t )
{
    // 初始化g2o
    typedef g2o::BlockSolver< g2o::BlockSolverTraits<6,3> > Block;  // pose 维度为 6, landmark 维度为 3
    Block::LinearSolverType* linearSolver = new g2o::LinearSolverCSparse(); // 线性方程求解器
    Block* solver_ptr = new Block ( linearSolver );     // 矩阵块求解器
    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr );
    g2o::SparseOptimizer optimizer;
    optimizer.setAlgorithm ( solver );

    // vertex
    g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); // camera pose
    Eigen::Matrix3d R_mat;
    R_mat <<
          R.at ( 0,0 ), R.at ( 0,1 ), R.at ( 0,2 ),
               R.at ( 1,0 ), R.at ( 1,1 ), R.at ( 1,2 ),
               R.at ( 2,0 ), R.at ( 2,1 ), R.at ( 2,2 );
    pose->setId ( 0 );
    pose->setEstimate ( g2o::SE3Quat (
                            R_mat,
                            Eigen::Vector3d ( t.at ( 0,0 ), t.at ( 1,0 ), t.at ( 2,0 ) )
                        ) );
    optimizer.addVertex ( pose );

    int index = 1;
    for ( const Point3f p:points_3d )   // landmarks
    {
        g2o::VertexSBAPointXYZ* point = new g2o::VertexSBAPointXYZ();
        point->setId ( index++ );
        point->setEstimate ( Eigen::Vector3d ( p.x, p.y, p.z ) );
        point->setMarginalized ( true ); // g2o 中必须设置 marg 参见第十讲内容
        optimizer.addVertex ( point );
    }

    // parameter: camera intrinsics
    g2o::CameraParameters* camera = new g2o::CameraParameters (
        K.at ( 0,0 ), Eigen::Vector2d ( K.at ( 0,2 ), K.at ( 1,2 ) ), 0
    );
    camera->setId ( 0 );
    optimizer.addParameter ( camera );

    // edges
    index = 1;
    for ( const Point2f p:points_2d )
    {
        g2o::EdgeProjectXYZ2UV* edge = new g2o::EdgeProjectXYZ2UV();
        edge->setId ( index );
        edge->setVertex ( 0, dynamic_cast ( optimizer.vertex ( index ) ) );
        edge->setVertex ( 1, pose );
        edge->setMeasurement ( Eigen::Vector2d ( p.x, p.y ) );
        edge->setParameterId ( 0,0 );
        edge->setInformation ( Eigen::Matrix2d::Identity() );
        optimizer.addEdge ( edge );
        index++;
    }

    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
    optimizer.setVerbose ( true );
    optimizer.initializeOptimization();
    optimizer.optimize ( 100 );
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    chrono::duration time_used = chrono::duration_cast> ( t2-t1 );
    cout<<"optimization costs time: "<视觉里程计3(SLAM十四讲ch7)-PnP_第11张图片视觉里程计3(SLAM十四讲ch7)-PnP_第12张图片

你可能感兴趣的:(SLAM,SLAM,PnP)