小张刷力扣--第二十二天

文章目录

    • 235. 二叉搜索树的最近公共祖先
    • 701. 二叉搜索树中的插入操作
    • 450. 删除二叉搜索树中的节点

235. 二叉搜索树的最近公共祖先

题目链接
难度:中等

  • 题目描述

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

解法1

  • 因为是有序树,所有 如果 中间节点是 q 和 p 的公共祖先,那么 中节点的数组 一定是在 [p, q]区间的
  • 那么只要从上到下去遍历,遇到 cur节点是数值在[p, q]区间中则一定可以说明该节点cur就是q 和 p的公共祖先。
  • 当我们从上向下去递归遍历,第一次遇到 cur节点是数值在[p, q]区间中,那么cur就是 p和q的最近公共祖先。
class Solution {
private:
    TreeNode* traversal(TreeNode* cur, TreeNode* p, TreeNode* q) {
        if (cur == NULL) return cur;
                                                        // 中
        if (cur->val > p->val && cur->val > q->val) {   // 左
            TreeNode* left = traversal(cur->left, p, q);
            if (left != NULL) {
                return left;
            }
        }

        if (cur->val < p->val && cur->val < q->val) {   // 右
            TreeNode* right = traversal(cur->right, p, q);
            if (right != NULL) {
                return right;
            }
        }
        return cur;
    }
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        return traversal(root, p, q);
    }
};

解法2

class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        while(root) {
            if (root->val > p->val && root->val > q->val) {
                root = root->left;
            } else if (root->val < p->val && root->val < q->val) {
                root = root->right;
            } else return root;
        }
        return NULL;
    }
};

701. 二叉搜索树中的插入操作

题目链接
难度:中等

  • 题目描述

给定二叉搜索树(BST)的根节点 root 和要插入树中的值 value ,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据 保证 ,新值和原始二叉搜索树中的任意节点值都不同。能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回 任意有效的结果 。

解法1

  • 只要遍历二叉搜索树,找到空节点 插入元素就可以了.
class Solution {
public:
    TreeNode* insertIntoBST(TreeNode* root, int val) {
        if (root == NULL) {
            TreeNode* node = new TreeNode(val);
            return node;
        }
        if (root->val > val) root->left = insertIntoBST(root->left, val);
        if (root->val < val) root->right = insertIntoBST(root->right, val);
        return root;
    }
};

解法2

class Solution {
public:
    TreeNode* insertIntoBST(TreeNode* root, int val) {
        if (root == NULL) {
            TreeNode* node = new TreeNode(val);
            return node;
        }
        TreeNode* cur = root;
        TreeNode* parent = root; // 这个很重要,需要记录上一个节点,否则无法赋值新节点
        while (cur != NULL) {
            parent = cur;
            if (cur->val > val) cur = cur->left;
            else cur = cur->right;
        }
        TreeNode* node = new TreeNode(val);
        if (val < parent->val) parent->left = node;// 此时是用parent节点的进行赋值
        else parent->right = node;
        return root;
    }
};

450. 删除二叉搜索树中的节点

题目链接
难度:中等

  • 题目描述

给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。

解法1

class Solution {
public:
    TreeNode* deleteNode(TreeNode* root, int key) {
        if (root == nullptr) return root; // 第一种情况:没找到删除的节点,遍历到空节点直接返回了
        if (root->val == key) {
            // 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
            if (root->left == nullptr && root->right == nullptr) {
                ///! 内存释放
                delete root;
                return nullptr;
            }
            // 第三种情况:其左孩子为空,右孩子不为空,删除节点,右孩子补位 ,返回右孩子为根节点
            else if (root->left == nullptr) {
                auto retNode = root->right;
                ///! 内存释放
                delete root;
                return retNode;
            }
            // 第四种情况:其右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
            else if (root->right == nullptr) {
                auto retNode = root->left;
                ///! 内存释放
                delete root;
                return retNode;
            }
            // 第五种情况:左右孩子节点都不为空,则将删除节点的左子树放到删除节点的右子树的最左面节点的左孩子的位置
            // 并返回删除节点右孩子为新的根节点。
            else {
                TreeNode* cur = root->right; // 找右子树最左面的节点
                while(cur->left != nullptr) {
                    cur = cur->left;
                }
                cur->left = root->left; // 把要删除的节点(root)左子树放在cur的左孩子的位置
                TreeNode* tmp = root;   // 把root节点保存一下,下面来删除
                root = root->right;     // 返回旧root的右孩子作为新root
                delete tmp;             // 释放节点内存(这里不写也可以,但C++最好手动释放一下吧)
                return root;
            }
        }
        if (root->val > key) root->left = deleteNode(root->left, key);
        if (root->val < key) root->right = deleteNode(root->right, key);
        return root;
    }
};

解法2

class Solution {
private:
    // 将目标节点(删除节点)的左子树放到 目标节点的右子树的最左面节点的左孩子位置上
    // 并返回目标节点右孩子为新的根节点
    // 是动画里模拟的过程
    TreeNode* deleteOneNode(TreeNode* target) {
        if (target == nullptr) return target;
        if (target->right == nullptr) return target->left;
        TreeNode* cur = target->right;
        while (cur->left) {
            cur = cur->left;
        }
        cur->left = target->left;
        return target->right;
    }
public:
    TreeNode* deleteNode(TreeNode* root, int key) {
        if (root == nullptr) return root;
        TreeNode* cur = root;
        TreeNode* pre = nullptr; // 记录cur的父节点,用来删除cur
        while (cur) {
            if (cur->val == key) break;
            pre = cur;
            if (cur->val > key) cur = cur->left;
            else cur = cur->right;
        }
        if (pre == nullptr) { // 如果搜索树只有头结点
            return deleteOneNode(cur);
        }
        // pre 要知道是删左孩子还是右孩子
        if (pre->left && pre->left->val == key) {
            pre->left = deleteOneNode(cur);
        }
        if (pre->right && pre->right->val == key) {
            pre->right = deleteOneNode(cur);
        }
        return root;
    }
};

你可能感兴趣的:(力扣,leetcode,算法,职场和发展)