原文地址
HBase是建立在Hadoop生态之上的Database,源生对离线任务支持友好,又因为LSM树是一个优秀的高吞吐数据库结构,所以同时也对接了很多线上业务。在线业务对访问延迟敏感,并且访问趋向于随机,如订单、客服轨迹查询。离线业务通常是数仓的定时大批量处理任务,对一段时间内的数据进行处理并产出结果,对任务完成的时间要求不是非常敏感,并且处理逻辑复杂,如天级别报表、安全和用户行为分析、模型训练等。
HBase在滴滴主要存放了以下四种数据类型:
1. 统计结果、报表类数据:主要是运营、运力情况、收入等结果,通常需要配合Phoenix进行SQL查询。数据量较小,对查询的灵活性要求高,延迟要求一般。
2. 原始事实类数据:如订单、司机乘客的GPS轨迹、日志等,主要用作在线和离线的数据供给。数据量大,对一致性和可用性要求高,延迟敏感,实时写入,单点或批量查询。
3. 中间结果数据:指模型训练所需要的数据等。数据量大,可用性和一致性要求一般,对批量查询时的吞吐量要求高。
4. 线上系统的备份数据:用户把原始数据存在了其他关系数据库或文件服务,把HBase作为一个异地容灾的方案。
这份数据使用过滴滴产品的用户应该都接触过,就是App上的历史订单。近期订单的查询会落在Redis,超过一定时间范围,或者当Redis不可用时,查询会落在HBase上。业务方的需求如下:
1. 在线查询订单生命周期的各个状态,包括status、event_type、order_detail等信息。主要的查询来自于客服系统。
2. 在线历史订单详情查询。上层会有Redis来存储近期的订单,当Redis不可用或者查询范围超出Redis,查询会直接落到HBase。
3. 离线对订单的状态进行分析。
4. 写入满足每秒10K的事件,读取满足每秒1K的事件,数据要求在5s内可用。
图1 订单流数据流程
按照这些要求,我们对Rowkey做出了下面的设计,都是很典型的scan场景。
订单状态表:
Rowkey:reverse(order_id) + (MAX_LONG - TS)
Columns:该订单各种状态
订单历史表:
Rowkey:reverse(passenger_id | driver_id) + (MAX_LONG - TS)
Columns:用户在时间范围内的订单及其他信息
这也是一份滴滴用户关系密切的数据,线上用户、滴滴的各个业务线和分析人员都会使用。举几个使用场景上的例子:用户查看历史订单时,地图上显示所经过的路线;发生司乘纠纷,客服调用订单轨迹复现场景;地图部门用户分析道路拥堵情况。
业务方提出的需求:
1. 满足App用户或者后端分析人员的实时或准实时轨迹坐标查询;
2. 满足离线大规模的轨迹分析;
3. 满足给出一个指定的地理范围,取出范围内所有用户的轨迹或范围内出现过的用户。
其中,关于第三个需求,地理位置查询,我们知道MongoDB对于这种地理索引有源生的支持,但是在滴滴这种量级的情况下可能会发生存储瓶颈,HBase存储和扩展性上没有压力但是没有内置类似MongoDB地理位置索引的功能,没有就需要我们自己实现。通过调研,了解到关于地理索引有一套比较通用的GeohHash算法 。
GeoHash是将二维的经纬度转换成字符串,每一个字符串代表了某一矩形区域。也就是说,这个矩形区域内所有的点(经纬度坐标)都共享相同的GeoHash字符串,比如说我在悠唐酒店,我的一个朋友在旁边的悠唐购物广场,我们的经纬度点会得到相同的GeoHash串。这样既可以保护隐私(只表示大概区域位置而不是具体的点),又比较容易做缓存。
但是我们要查询的范围和GeohHash块可能不会完全重合。以圆形为例,查询时会出现如图4所示的一半在GeoHash块内,一半在外面的情况(如A、B、C、D、E、F、G等点)。这种情况就需要对GeoHash块内每个真实的GPS点进行第二次的过滤,通过原始的GPS点和圆心之间的距离,过滤掉不符合查询条件的数据。
最后依据这个原理,把GeoHash和其他一些需要被索引的维度拼装成Rowkey,真实的GPS点为Value,在这个基础上封装成客户端,并且在客户端内部对查询逻辑和查询策略做出速度上的大幅优化,这样就把HBase变成了一个MongoDB一样支持地理位置索引的数据库。如果查询范围非常大(比如进行省级别的分析),还额外提供了MR的获取数据的入口。
两种查询场景的Rowkey设计如下:
1. 单个用户按订单或时间段查询: reverse(user_id) + (Integer.MAX_LONG-TS/1000)
2. 给定范围内的轨迹查询:reverse(geohash) + ts/1000 + user_id
ETA是指每次选好起始和目的地后,提示出的预估时间和价格。提示的预估到达时间和价格,最初版本是离线方式运行,后来改版通过HBase实现实时效果,把HBase当成一个KeyValue缓存,带来了减少训练时间、可多城市并行、减少人工干预的好处。
整个ETA的过程如下:
1. 模型训练通过Spark Job,每30分钟对各个城市训练一次;
2. 模型训练第一阶段,在5分钟内,按照设定条件从HBase读取所有城市数据;
3. 模型训练第二阶段在25分钟内完成ETA的计算;
4. HBase中的数据每隔一段时间会持久化至HDFS中,供新模型测试和新的特征提取。
Rowkey:salting+cited+type0+type1+type2+TS
Column:order, feature
图5 ETA数据流程
用于监控Hadoop集群的资源使用(Namenode,Yarn container使用等),关系数据库在时间维度过程以后会产生各种性能问题,同时我们又希望可以通过SQL做一些分析查询,所以使用Phoenix,使用采集程序定时录入数据,生产成报表,存入HBase,可以在秒级别返回查询结果,最后在前端做展示。
图6 DCM数据流程
图7、图8、图9是几张监控工具的用户UI,数字相关的部分做了模糊处理。
图7 DCM HDFS按时间统计使用全量和增量
我们认为单集群多租户是最高效和节省精力的方案,但是由于HBase对多租户基本没有管理,使用上会遇到很多问题:在用户方面比如对资源使用情况不做分析、存储总量发生变化后不做调整和通知、项目上线下线没有计划、想要最多的资源和权限等;我们平台管理者也会遇到比如线上沟通难以理解用户的业务、对每个接入HBase的项目状态不清楚、不能判断出用户的需求是否合理、多租户在集群上发生资源竞争、问题定位和排查时间长等。
针对这些问题,我们开发了DHS系统(Didi HBase Service)进行项目管理,并且在HBase上通过Namespace、RS Group等技术来分割用户的资源、数据和权限。通过计算开销并计费的方法来管控资源分配。
图10 DHS项目表监控
DHS主要有下面几个模块和功能:
1. 项目生命周期管理:包括立项、资源预估和申请、项目需求调整、需求讨论;
2. 用户管理:权限管理,项目审批;
3. 集群资源管理;
4. 表级别的使用情况监控:主要是读写监控、memstore、blockcache、locality。
当用户有使用HBase存储的需求,我们会让用户在DHS上注册项目。介绍业务的场景和产品相关的细节,以及是否有高SLA要求。
之后是新建表以及对表性能需求预估,我们要求用户对自己要使用的资源有一个准确的预估。如果用户难以估计,我们会以线上或者线下讨论的方式与用户讨论帮助确定这些信息。
然后会生成项目概览页面,方便管理员和用户进行项目进展的跟踪。
HBase自带的jxm信息会汇总到Region和RegionServer级别的数据,管理员会经常用到,但是用户却很少关注这个级别。根据这种情况我们开发了HBase表级别的监控,并且会有权限控制,让业务RD只能看到和自己相关的表,清楚自己项目表的吞吐及存储占用情况。
通过DHS让用户明确自己使用资源情况的基础之上,我们使用了RS Group技术,把一个集群分成多个逻辑子集群,可以让用户选择独占或者共享资源。共享和独占各有自己的优缺点,如表1。
根据以上的情况,我们在资源分配上会根据业务的特性来选择不同方案:
1. 对于访问延迟要求低、访问量小、可用性要求低、备份或者测试阶段的数据:使用共享资源池;
2. 对于延迟敏感、吞吐要求高、高峰时段访问量大、可用性要求高、在线业务:让其独占一定机器数量构成的RegionServer Group资源,并且按用户预估的资源量,额外给出20%~30%的余量。
最后我们会根据用户对资源的使用,定期计算开销并向用户发出账单。
RegionServer Group,实现细节可以参照HBase HBASE-6721这个Patch。滴滴在这个基础上作了一些分配策略上的优化,以便适合滴滴业务场景的修改。RS Group简单概括是指通过分配一批指定的RegionServer列表,成为一个RS Group,每个Group可以按需挂载不同的表,并且当Group内的表发生异常后,Region不会迁移到其他的Group。这样,每个Group就相当于一个逻辑上的子集群,通过这种方式达到资源隔离的效果,降低管理成本,不必为每个高SLA的业务线单独搭集群。
图11 RS Group示意图
原文地址