NNDL 实验五 前馈神经网络(2)自动梯度计算 & 优化问题

4.3 自动梯度计算

虽然我们能够通过模块化的方式比较好地对神经网络进行组装,但是每个模块的梯度计算过程仍然十分繁琐且容易出错。在深度学习框架中,已经封装了自动梯度计算的功能,我们只需要聚焦模型架构,不再需要耗费精力进行计算梯度。

pytorch中的相应内容是什么?请简要介绍。

答:

不同于飞桨提供的paddle.nn.Layer类,在pytorch中是torch.nn.Module类,torch.nn是专门为神经网络设计的模块化接口,nn.Module是nn中十分重要的类。官方注释如下:

NNDL 实验五 前馈神经网络(2)自动梯度计算 & 优化问题_第1张图片

根据官方注释我们了解到Module类是所有神经网络模块的基类,Module可以以树形结构包含其他的Module。Module类中包含网络各层的定义及forward方法,下面介绍我们如何定义自已的网络:

需要继承nn.Module类,并实现forward方法;

一般把网络中具有可学习参数的层放在构造函数__init__()中;

不具有可学习参数的层(如ReLU)可在forward中使用nn.functional来代替;

只要在nn.Module的子类中定义了forward函数,利用Autograd自动实现反向求导。


4.3.1使用pytorch的预定义算子来重新实现二分类任务

import torch.nn as nn
import torch.nn.functional as F
import os
import torch
from abc import abstractmethod
import math
import numpy as np


n_samples = 1000
X, y = make_moons(n_samples=n_samples, shuffle=True, noise=0.15)

num_train = 640
num_dev = 160
num_test = 200

X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]

y_train = y_train.reshape([-1,1])
y_dev = y_dev.reshape([-1,1])
y_test = y_test.reshape([-1,1])

class Model_MLP_L2_V4(torch.nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(Model_MLP_L2_V4, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        w=torch.normal(0,0.1,size=(hidden_size,input_size),requires_grad=True)
        self.fc1.weight = nn.Parameter(w)

        self.fc2 = nn.Linear(hidden_size, output_size)
        w = torch.normal(0, 0.1, size=(output_size, hidden_size), requires_grad=True)
        self.fc2.weight = nn.Parameter(w)

        # 使用'torch.nn.functional.sigmoid'定义 Logistic 激活函数
        self.act_fn = torch.sigmoid

    # 前向计算
    def forward(self, inputs):
        z1 = self.fc1(inputs.to(torch.float32))
        a1 = self.act_fn(z1)
        z2 = self.fc2(a1)
        a2 = self.act_fn(z2)
        return a2


# def print_weights(runner):
#     print('The weights of the Layers:')
#
#     for item in runner.model.sublayers():
#         print(item.full_name()
#         for param in item.parameters():
#             print(param.numpy())


class RunnerV2_2(object):
    def __init__(self, model, optimizer, metric, loss_fn, **kwargs):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric

        # 记录训练过程中的评估指标变化情况
        self.train_scores = []
        self.dev_scores = []

        # 记录训练过程中的评价指标变化情况
        self.train_loss = []
        self.dev_loss = []

    def train(self, train_set, dev_set, **kwargs):
        # 将模型切换为训练模式
        self.model.train()

        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_epochs = kwargs.get("log_epochs", 100)
        # 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"
        save_path = kwargs.get("save_path", "best_model.pdparams")

        # log打印函数,如果没有传入则默认为"None"
        custom_print_log = kwargs.get("custom_print_log", None)

        # 记录全局最优指标
        best_score = 0
        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            X, y = train_set

            # 获取模型预测
            logits = self.model(X.to(torch.float32))
            # 计算交叉熵损失
            trn_loss = self.loss_fn(logits, y)
            self.train_loss.append(trn_loss.item())
            # 计算评估指标
            trn_score = self.metric(logits, y).item()
            self.train_scores.append(trn_score)

            # 自动计算参数梯度
            trn_loss.backward()
            if custom_print_log is not None:
                # 打印每一层的梯度
                custom_print_log(self)

            # 参数更新
            self.optimizer.step()
            # 清空梯度
            self.optimizer.zero_grad()   # reset gradient

            dev_score, dev_loss = self.evaluate(dev_set)
            # 如果当前指标为最优指标,保存该模型
            if dev_score > best_score:
                self.save_model(save_path)
                print(f"[Evaluate] best accuracy performence has been updated: {best_score:.5f} --> {dev_score:.5f}")
                best_score = dev_score

            if log_epochs and epoch % log_epochs == 0:
                print(f"[Train] epoch: {epoch}/{num_epochs}, loss: {trn_loss.item()}")
    @torch.no_grad()
    def evaluate(self, data_set):
        # 将模型切换为评估模式
        self.model.eval()

        X, y = data_set
        # 计算模型输出
        logits = self.model(X)
        # 计算损失函数
        loss = self.loss_fn(logits, y).item()
        self.dev_loss.append(loss)
        # 计算评估指标
        score = self.metric(logits, y).item()
        self.dev_scores.append(score)
        return score, loss

    # 模型测试阶段,使用'torch.no_grad()'控制不计算和存储梯度
    @torch.no_grad()
    def predict(self, X):
        # 将模型切换为评估模式
        self.model.eval()
        return self.model(X)

    # 使用'model.state_dict()'获取模型参数,并进行保存
    def save_model(self, saved_path):
        torch.save(self.model.state_dict(), saved_path)

    # 使用'model.set_state_dict'加载模型参数
    def load_model(self, model_path):
        state_dict = torch.load(model_path)
        self.model.load_state_dict(state_dict)


# 设置模型
input_size = 2
hidden_size = 5
output_size = 1
model = Model_MLP_L2_V4(input_size=input_size, hidden_size=hidden_size, output_size=output_size)

# 设置损失函数
loss_fn = F.binary_cross_entropy

# 设置优化器
learning_rate = 0.2 #5e-2
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)

# 设置评价指标
metric = accuracy

# 其他参数
epoch = 2000
saved_path = 'best_model.pdparams'

# 实例化RunnerV2类,并传入训练配置
runner = RunnerV2_2(model, optimizer, metric, loss_fn)

runner.train([X_train, y_train], [X_dev, y_dev], num_epochs = epoch, log_epochs=50, save_path="best_model.pdparams")

plot(runner, 'fw-acc.pdf')

#模型评价
runner.load_model("best_model.pdparams")
score, loss = runner.evaluate([X_test, y_test])
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))

make_moons函数代码如下:

import torch
# 新增make_moons函数
def make_moons(n_samples=1000, shuffle=True, noise=None):
    n_samples_out = n_samples // 2
    n_samples_in = n_samples - n_samples_out
    outer_circ_x = torch.cos(torch.linspace(0, math.pi, n_samples_out))
    outer_circ_y = torch.sin(torch.linspace(0, math.pi, n_samples_out))
    inner_circ_x = 1 - torch.cos(torch.linspace(0, math.pi, n_samples_in))
    inner_circ_y = 0.5 - torch.sin(torch.linspace(0, math.pi, n_samples_in))
    X = torch.stack(
        [torch.cat([outer_circ_x, inner_circ_x]),
         torch.cat([outer_circ_y, inner_circ_y])],
         axis=1
    )
    y = torch.cat(
        [torch.zeros([n_samples_out]), torch.ones([n_samples_in])]
    )
    if shuffle:
        idx = torch.randperm(X.shape[0])
        X = X[idx]
        y = y[idx]
    if noise is not None:
        X += np.random.normal(0.0, noise, X.shape)

    return X, y

accuracy函数代码如下:

def accuracy(preds, labels):
    # 判断是二分类任务还是多分类任务,preds.shape[1]=1时为二分类任务,preds.shape[1]>1时为多分类任务
    if preds.shape[1] == 1:
        preds=(preds>=0.5).to(torch.float32)

    else:
        preds = torch.argmax(preds,dim=1).int()

    return torch.mean((preds == labels).float())

plot函数代码如下:

import matplotlib.pyplot as plt
def plot(runner, fig_name):
    plt.figure(figsize=(10, 5))
    epochs = [i for i in range(len(runner.train_scores))]

    plt.subplot(1, 2, 1)
    plt.plot(epochs, runner.train_loss, color='#e4007f', label="Train loss")
    plt.plot(epochs, runner.dev_loss, color='#f19ec2', linestyle='--', label="Dev loss")
    # 绘制坐标轴和图例
    plt.ylabel("loss", fontsize='large')
    plt.xlabel("epoch", fontsize='large')
    plt.legend(loc='upper right', fontsize='x-large')

    plt.subplot(1, 2, 2)
    plt.plot(epochs, runner.train_scores, color='#e4007f', label="Train accuracy")
    plt.plot(epochs, runner.dev_scores, color='#f19ec2', linestyle='--', label="Dev accuracy")
    # 绘制坐标轴和图例
    plt.ylabel("score", fontsize='large')
    plt.xlabel("epoch", fontsize='large')
    plt.legend(loc='lower right', fontsize='x-large')
    plt.savefig(fig_name)
    plt.show()

输出结果:

训练集:

NNDL 实验五 前馈神经网络(2)自动梯度计算 & 优化问题_第2张图片

 验证集:

 NNDL 实验五 前馈神经网络(2)自动梯度计算 & 优化问题_第3张图片

 测试集:

NNDL 实验五 前馈神经网络(2)自动梯度计算 & 优化问题_第4张图片


4.3.2. 增加一个3个神经元的隐藏层,再次实现二分类,并与4.3.1做对比

模型初始化上:

# 设置模型
input_size = 2
hidden_size = 5
hidden_size2 = 3
output_size = 1
model = Model_MLP_L2_V4(input_size=input_size, hidden_size=hidden_size,hidden_size2=hidden_size2, output_size=output_size)

模型设置上:


class Model_MLP_L2_V4(torch.nn.Module):
    def __init__(self, input_size, hidden_size, hidden_size2, output_size):
        super(Model_MLP_L2_V4, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        w1=torch.normal(0,0.1,size=(hidden_size,input_size),requires_grad=True)
        self.fc1.weight = nn.Parameter(w1)

        self.fc2 = nn.Linear(hidden_size, hidden_size2)
        w2 = torch.normal(0, 0.1, size=(hidden_size2, hidden_size), requires_grad=True)
        self.fc2.weight = nn.Parameter(w2)

        self.fc3 = nn.Linear(hidden_size2, output_size)
        w3 = torch.normal(0, 0.1, size=(output_size, hidden_size2), requires_grad=True)
        self.fc3.weight = nn.Parameter(w3)

        # 使用'torch.nn.functional.sigmoid'定义 Logistic 激活函数
        self.act_fn = torch.sigmoid

    # 前向计算
    def forward(self, inputs):
        z1 = self.fc1(inputs.to(torch.float32))
        a1 = self.act_fn(z1)
        z2 = self.fc2(a1)
        a2 = self.act_fn(z2)
        z3 = self.fc3(a2)
        a3 = self.act_fn(z3)
        return a3

输出结果:

NNDL 实验五 前馈神经网络(2)自动梯度计算 & 优化问题_第5张图片

 可视化:

NNDL 实验五 前馈神经网络(2)自动梯度计算 & 优化问题_第6张图片

描绘边界效果:

import math
import matplotlib.pyplot as plt
# 均匀生成40000个数据点
x1, x2 = torch.meshgrid(torch.linspace(-math.pi, math.pi, 200), torch.linspace(-math.pi, math.pi, 200))

x = torch.stack([torch.flatten(x1), torch.flatten(x2)], axis=1)

# 预测对应类别
y = runner.predict(x)
# y = torch.squeeze(torch.as_tensor(torch.can_cast((y>=0.5).dtype,torch.float32)))

# 绘制类别区域
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(x[:,0].tolist(), x[:,1].tolist(), c=y.tolist(), cmap=plt.cm.Spectral)

plt.scatter(X_train[:, 0].tolist(), X_train[:, 1].tolist(), marker='*', c=torch.squeeze(y_train,axis=-1).tolist())
plt.scatter(X_dev[:, 0].tolist(), X_dev[:, 1].tolist(), marker='*', c=torch.squeeze(y_dev,axis=-1).tolist())
plt.scatter(X_test[:, 0].tolist(), X_test[:, 1].tolist(), marker='*', c=torch.squeeze(y_test,axis=-1).tolist())

plt.show()

输出结果:

NNDL 实验五 前馈神经网络(2)自动梯度计算 & 优化问题_第7张图片

 lr=5的情况下无论性能、运行结果、可视化都比较理想。


4.4 优化问题


4.4.1 参数初始化

实现一个神经网络前,需要先初始化模型参数。

如果对每一层的权重和偏置都用0初始化,那么通过第一遍前向计算,所有隐藏层神经元的激活值都相同;在反向传播时,所有权重的更新也都相同,这样会导致隐藏层神经元没有差异性,出现对称权重现象

接下来,将模型参数全都初始化为0,看实验结果。

# import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义多层前馈神经网络
class Model_MLP_L2_V4(torch.nn.Module):
    def __init__(self, input_size, hidden_size,output_size):
        super(Model_MLP_L2_V4, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        # w1=torch.normal(0,0.1,size=(hidden_size,input_size),requires_grad=True)
        # self.fc1.weight = nn.Parameter(w1)
        self.fc1.weight=nn.init.constant_(self.fc1.weight,val=0.0)
        # self.fc1.bias = nn.init.constant_(self.fc1.bias, val=1.0)
        self.fc1.bias = nn.init.constant_(self.fc1.bias, val=0.0)
        self.fc2 = nn.Linear(hidden_size, output_size)
        # w2 = torch.normal(0, 0.1, size=(output_size, hidden_size), requires_grad=True)
        # self.fc2.weight = nn.Parameter(w2)
        self.fc2.weight = nn.init.constant_(self.fc2.weight, val=0.0)
        self.fc2.bias = nn.init.constant_(self.fc2.bias, val=0.0)
        # 使用'torch.nn.functional.sigmoid'定义 Logistic 激活函数
        self.act_fn = torch.sigmoid

    # 前向计算
    def forward(self, inputs):
        z1 = self.fc1(inputs.to(torch.float32))
        a1 = self.act_fn(z1)
        z2 = self.fc2(a1)
        a2 = self.act_fn(z2)
        return a2

利用Runner类训练模型:

# 设置模型
input_size = 2
hidden_size = 5
output_size = 1
model = Model_MLP_L2_V4(input_size=input_size, hidden_size=hidden_size, output_size=output_size)

# 设置损失函数
loss_fn = F.binary_cross_entropy

# 设置优化器
learning_rate = 0.02 #5e-2
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)

# 设置评价指标
metric = accuracy

# 其他参数
epoch = 2000
saved_path = 'best_model.pdparams'

# 实例化RunnerV2类,并传入训练配置
runner = RunnerV2_2(model, optimizer, metric, loss_fn)

runner.train([X_train, y_train], [X_dev, y_dev], num_epochs = epoch, log_epochs=50, save_path="best_model.pdparams")

输出结果:

NNDL 实验五 前馈神经网络(2)自动梯度计算 & 优化问题_第8张图片

从输出结果看,二分类准确率为50%左右,说明模型没有学到任何内容。训练和验证loss几乎没有怎么下降。

为了避免对称权重现象,可以使用高斯分布或均匀分布初始化神经网络的参数。


4.4.2 梯度消失问题

在神经网络的构建过程中,随着网络层数的增加,理论上网络的拟合能力也应该是越来越好的。但是随着网络变深,参数学习更加困难,容易出现梯度消失问题。

由于Sigmoid型函数的饱和性,饱和区的导数更接近于0,误差经过每一层传递都会不断衰减。当网络层数很深时,梯度就会不停衰减,甚至消失,使得整个网络很难训练,这就是所谓的梯度消失问题。
在深度神经网络中,减轻梯度消失问题的方法有很多种,一种简单有效的方式就是使用导数比较大的激活函数,如:ReLU。


4.4.2.1 模型构建

定义一个前馈神经网络,包含4个隐藏层1个输出层,通过传入的参数指定激活函数。

# 定义多层前馈神经网络
class Model_MLP_L5(torch.nn.Module):
    def __init__(self, input_size, output_size, act='relu'):
        super(Model_MLP_L5, self).__init__()
        self.fc1 = torch.nn.Linear(input_size, 3)
        w_ = torch.normal(0, 0.01, size=(3, input_size), requires_grad=True)
        self.fc1.weight = nn.Parameter(w_)
        self.fc1.bias = nn.init.constant_(self.fc1.bias, val=1.0)
        w= torch.normal(0, 0.01, size=(3, 3), requires_grad=True)

        self.fc2 = torch.nn.Linear(3, 3)
        self.fc2.weight = nn.Parameter(w)
        self.fc2.bias = nn.init.constant_(self.fc2.bias, val=1.0)
        self.fc3 = torch.nn.Linear(3, 3)
        self.fc3.weight = nn.Parameter(w)
        self.fc3.bias = nn.init.constant_(self.fc3.bias, val=1.0)
        self.fc4 = torch.nn.Linear(3, 3)
        self.fc4.weight = nn.Parameter(w)
        self.fc4.bias = nn.init.constant_(self.fc4.bias, val=1.0)
        self.fc5 = torch.nn.Linear(3, output_size)
        w1 = torch.normal(0, 0.01, size=(output_size, 3), requires_grad=True)
        self.fc5.weight = nn.Parameter(w1)
        self.fc5.bias = nn.init.constant_(self.fc5.bias, val=1.0)
        # 定义网络使用的激活函数
        if act == 'sigmoid':
            self.act = F.sigmoid
        elif act == 'relu':
            self.act = F.relu
        elif act == 'lrelu':
            self.act = F.leaky_relu
        else:
            raise ValueError("Please enter sigmoid relu or lrelu!")


    def forward(self, inputs):
        outputs = self.fc1(inputs.to(torch.float32))
        outputs = self.act(outputs)
        outputs = self.fc2(outputs)
        outputs = self.act(outputs)
        outputs = self.fc3(outputs)
        outputs = self.act(outputs)
        outputs = self.fc4(outputs)
        outputs = self.act(outputs)
        outputs = self.fc5(outputs)
        outputs = F.sigmoid(outputs)
        return outputs

4.4.2.2 使用Sigmoid型函数进行训练

使用Sigmoid型函数作为激活函数,为了便于观察梯度消失现象,只进行一轮网络优化。

# 学习率大小
lr = 0.01

# 定义网络,激活函数使用sigmoid
model = Model_MLP_L5(input_size=2, output_size=1, act='sigmoid')

# 定义优化器
optimizer = torch.optim.SGD(model.parameters(),lr=lr)

# 定义损失函数,使用交叉熵损失函数
loss_fn = F.binary_cross_entropy

# 定义评价指标
metric = accuracy

实例化RunnerV2_2类,并传入训练配置。代码实现如下:

# 实例化Runner类
runner = RunnerV2_2(model, optimizer, metric, loss_fn)

完整模型:

import torch.nn as nn
import torch.nn.functional as F
import os
import torch
from abc import abstractmethod
import math
import numpy as np

import torch
# 新增make_moons函数
def make_moons(n_samples=1000, shuffle=True, noise=None):
    n_samples_out = n_samples // 2
    n_samples_in = n_samples - n_samples_out
    outer_circ_x = torch.cos(torch.linspace(0, math.pi, n_samples_out))
    outer_circ_y = torch.sin(torch.linspace(0, math.pi, n_samples_out))
    inner_circ_x = 1 - torch.cos(torch.linspace(0, math.pi, n_samples_in))
    inner_circ_y = 0.5 - torch.sin(torch.linspace(0, math.pi, n_samples_in))
    X = torch.stack(
        [torch.cat([outer_circ_x, inner_circ_x]),
         torch.cat([outer_circ_y, inner_circ_y])],
         axis=1
    )
    y = torch.cat(
        [torch.zeros([n_samples_out]), torch.ones([n_samples_in])]
    )
    if shuffle:
        idx = torch.randperm(X.shape[0])
        X = X[idx]
        y = y[idx]
    if noise is not None:
        X += np.random.normal(0.0, noise, X.shape)

    return X, y

def accuracy(preds, labels):
    # 判断是二分类任务还是多分类任务,preds.shape[1]=1时为二分类任务,preds.shape[1]>1时为多分类任务
    if preds.shape[1] == 1:
        preds=(preds>=0.5).to(torch.float32)

    else:
        preds = torch.argmax(preds,dim=1).int()

    return torch.mean((preds == labels).float())

import matplotlib.pyplot as plt
def plot(runner, fig_name):
    plt.figure(figsize=(10, 5))
    epochs = [i for i in range(len(runner.train_scores))]

    plt.subplot(1, 2, 1)
    plt.plot(epochs, runner.train_loss, color='#e4007f', label="Train loss")
    plt.plot(epochs, runner.dev_loss, color='#f19ec2', linestyle='--', label="Dev loss")
    # 绘制坐标轴和图例
    plt.ylabel("loss", fontsize='large')
    plt.xlabel("epoch", fontsize='large')
    plt.legend(loc='upper right', fontsize='x-large')

    plt.subplot(1, 2, 2)
    plt.plot(epochs, runner.train_scores, color='#e4007f', label="Train accuracy")
    plt.plot(epochs, runner.dev_scores, color='#f19ec2', linestyle='--', label="Dev accuracy")
    # 绘制坐标轴和图例
    plt.ylabel("score", fontsize='large')
    plt.xlabel("epoch", fontsize='large')
    plt.legend(loc='lower right', fontsize='x-large')
    plt.savefig(fig_name)
    plt.show()


n_samples = 1000
X, y = make_moons(n_samples=n_samples, shuffle=True, noise=0.15)

num_train = 640
num_dev = 160
num_test = 200

X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]

y_train = y_train.reshape([-1,1])
y_dev = y_dev.reshape([-1,1])
y_test = y_test.reshape([-1,1])


# import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义多层前馈神经网络
# 定义多层前馈神经网络
class Model_MLP_L5(torch.nn.Module):
    def __init__(self, input_size, output_size, act='relu'):
        super(Model_MLP_L5, self).__init__()
        self.fc1 = torch.nn.Linear(input_size, 3)
        w_ = torch.normal(0, 0.01, size=(3, input_size), requires_grad=True)
        self.fc1.weight = nn.Parameter(w_)
        self.fc1.bias = nn.init.constant_(self.fc1.bias, val=1.0)
        w= torch.normal(0, 0.01, size=(3, 3), requires_grad=True)

        self.fc2 = torch.nn.Linear(3, 3)
        self.fc2.weight = nn.Parameter(w)
        self.fc2.bias = nn.init.constant_(self.fc2.bias, val=1.0)
        self.fc3 = torch.nn.Linear(3, 3)
        self.fc3.weight = nn.Parameter(w)
        self.fc3.bias = nn.init.constant_(self.fc3.bias, val=1.0)
        self.fc4 = torch.nn.Linear(3, 3)
        self.fc4.weight = nn.Parameter(w)
        self.fc4.bias = nn.init.constant_(self.fc4.bias, val=1.0)
        self.fc5 = torch.nn.Linear(3, output_size)
        w1 = torch.normal(0, 0.01, size=(output_size, 3), requires_grad=True)
        self.fc5.weight = nn.Parameter(w1)
        self.fc5.bias = nn.init.constant_(self.fc5.bias, val=1.0)
        # 定义网络使用的激活函数
        if act == 'sigmoid':
            self.act = F.sigmoid
        elif act == 'relu':
            self.act = F.relu
        elif act == 'lrelu':
            self.act = F.leaky_relu
        else:
            raise ValueError("Please enter sigmoid relu or lrelu!")


    def forward(self, inputs):
        outputs = self.fc1(inputs.to(torch.float32))
        outputs = self.act(outputs)
        outputs = self.fc2(outputs)
        outputs = self.act(outputs)
        outputs = self.fc3(outputs)
        outputs = self.act(outputs)
        outputs = self.fc4(outputs)
        outputs = self.act(outputs)
        outputs = self.fc5(outputs)
        outputs = F.sigmoid(outputs)
        return outputs




# def print_weights(runner):
#     print('The weights of the Layers:')
#
#     for item in runner.model.sublayers():
#         print(item.full_name()
#         for param in item.parameters():
#             print(param.numpy())


class RunnerV2_2(object):
    def __init__(self, model, optimizer, metric, loss_fn, **kwargs):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric

        # 记录训练过程中的评估指标变化情况
        self.train_scores = []
        self.dev_scores = []

        # 记录训练过程中的评价指标变化情况
        self.train_loss = []
        self.dev_loss = []

    def train(self, train_set, dev_set, **kwargs):
        # 将模型切换为训练模式
        self.model.train()

        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_epochs = kwargs.get("log_epochs", 100)
        # 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"
        save_path = kwargs.get("save_path", "best_model.pdparams")

        # log打印函数,如果没有传入则默认为"None"
        custom_print_log = kwargs.get("custom_print_log", None)

        # 记录全局最优指标
        best_score = 0
        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            X, y = train_set

            # 获取模型预测
            logits = self.model(X.to(torch.float32))
            # 计算交叉熵损失
            trn_loss = self.loss_fn(logits, y)
            self.train_loss.append(trn_loss.item())
            # 计算评估指标
            trn_score = self.metric(logits, y).item()
            self.train_scores.append(trn_score)

            # 自动计算参数梯度
            trn_loss.backward()
            if custom_print_log is not None:
                # 打印每一层的梯度
                custom_print_log(self)

            # 参数更新
            self.optimizer.step()
            # 清空梯度
            self.optimizer.zero_grad()   # reset gradient

            dev_score, dev_loss = self.evaluate(dev_set)
            # 如果当前指标为最优指标,保存该模型
            if dev_score > best_score:
                self.save_model(save_path)
                print(f"[Evaluate] best accuracy performence has been updated: {best_score:.5f} --> {dev_score:.5f}")
                best_score = dev_score

            if log_epochs and epoch % log_epochs == 0:
                print(f"[Train] epoch: {epoch}/{num_epochs}, loss: {trn_loss.item()}")
    @torch.no_grad()
    def evaluate(self, data_set):
        # 将模型切换为评估模式
        self.model.eval()

        X, y = data_set
        # 计算模型输出
        logits = self.model(X)
        # 计算损失函数
        loss = self.loss_fn(logits, y).item()
        self.dev_loss.append(loss)
        # 计算评估指标
        score = self.metric(logits, y).item()
        self.dev_scores.append(score)
        return score, loss

    # 模型测试阶段,使用'torch.no_grad()'控制不计算和存储梯度
    @torch.no_grad()
    def predict(self, X):
        # 将模型切换为评估模式
        self.model.eval()
        return self.model(X)

    # 使用'model.state_dict()'获取模型参数,并进行保存
    def save_model(self, saved_path):
        torch.save(self.model.state_dict(), saved_path)

    # 使用'model.set_state_dict'加载模型参数
    def load_model(self, model_path):
        state_dict = torch.load(model_path)
        self.model.load_state_dict(state_dict)


# 设置模型
# 设置模型
# 设置模型
input_size = 2
hidden_size = 5
output_size = 1
model = Model_MLP_L5(input_size=input_size, output_size=output_size)

# 设置损失函数
loss_fn = F.binary_cross_entropy

# 设置优化器
lr = 0.01 #5e-2
# 定义网络,激活函数使用sigmoid
model = Model_MLP_L5(input_size=2, output_size=1, act='sigmoid')

# 定义优化器
optimizer = torch.optim.SGD(model.parameters(),lr=lr)

# 定义损失函数,使用交叉熵损失函数
loss_fn = F.binary_cross_entropy

# 定义评价指标
metric = accuracy

# 其他参数
epoch = 2000
saved_path = 'best_model.pdparams'

# 实例化RunnerV2类,并传入训练配置
runner = RunnerV2_2(model, optimizer, metric, loss_fn)

runner.train([X_train, y_train], [X_dev, y_dev], num_epochs = epoch, log_epochs=50, save_path="best_model.pdparams")


plot(runner, 'fw-acc.pdf')

#模型评价
runner.load_model("best_model.pdparams")
score, loss = runner.evaluate([X_test, y_test])
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))




import math
import matplotlib.pyplot as plt
# 均匀生成40000个数据点
x1, x2 = torch.meshgrid(torch.linspace(-math.pi, math.pi, 200), torch.linspace(-math.pi, math.pi, 200))

x = torch.stack([torch.flatten(x1), torch.flatten(x2)], axis=1)

# 预测对应类别
y = runner.predict(x)
# y = torch.squeeze(torch.as_tensor(torch.can_cast((y>=0.5).dtype,torch.float32)))

# 绘制类别区域
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(x[:,0].tolist(), x[:,1].tolist(), c=y.tolist(), cmap=plt.cm.Spectral)

plt.scatter(X_train[:, 0].tolist(), X_train[:, 1].tolist(), marker='*', c=torch.squeeze(y_train,axis=-1).tolist())
plt.scatter(X_dev[:, 0].tolist(), X_dev[:, 1].tolist(), marker='*', c=torch.squeeze(y_dev,axis=-1).tolist())
plt.scatter(X_test[:, 0].tolist(), X_test[:, 1].tolist(), marker='*', c=torch.squeeze(y_test,axis=-1).tolist())

plt.show()

运行结果:

NNDL 实验五 前馈神经网络(2)自动梯度计算 & 优化问题_第9张图片

 

 可视化:

NNDL 实验五 前馈神经网络(2)自动梯度计算 & 优化问题_第10张图片

 梯度经过每一个神经层的传递都会不断衰减,最终传递到第一个神经层时,梯度几乎完全消失。


4.4.3 死亡 ReLU 问题
ReLU激活函数可以一定程度上改善梯度消失问题,但是ReLU函数在某些情况下容易出现死亡 ReLU问题,使得网络难以训练。这是由于当x<0时,ReLU函数的输出恒为0。在训练过程中,如果参数在一次不恰当的更新后,某个ReLU神经元在所有训练数据上都不能被激活(即输出为0),那么这个神经元自身参数的梯度永远都会是0,在以后的训练过程中永远都不能被激活。而一种简单有效的优化方式就是将激活函数更换为Leaky ReLU、ELU等ReLU的变种。


4.4.3.1 使用ReLU进行模型训练
使用第4.4.2节中定义的多层全连接前馈网络进行实验,使用ReLU作为激活函数,观察死亡ReLU现象和优化方法。当神经层的偏置被初始化为一个相对于权重较大的负值时,可以想像,输入经过神经层的处理,最终的输出会为负值,从而导致死亡ReLU现象。
只需要修改网络定义层的偏置,其余代码不变:

 

# 定义多层前馈神经网络
class Model_MLP_L5(torch.nn.Module):
    def __init__(self, input_size, output_size, act='relu'):
        super(Model_MLP_L5, self).__init__()
        self.fc1 = torch.nn.Linear(input_size, 3)
        w_ = torch.normal(0, 0.01, size=(3, input_size), requires_grad=True)
        self.fc1.weight = nn.Parameter(w_)
        # self.fc1.bias = nn.init.constant_(self.fc1.bias, val=1.0)
        self.fc1.bias = nn.init.constant_(self.fc1.bias, val=-8.0)
        w= torch.normal(0, 0.01, size=(3, 3), requires_grad=True)

        self.fc2 = torch.nn.Linear(3, 3)
        self.fc2.weight = nn.Parameter(w)
        # self.fc2.bias = nn.init.constant_(self.fc2.bias, val=1.0)
        self.fc1.bias = nn.init.constant_(self.fc1.bias, val=-8.0)
        self.fc3 = torch.nn.Linear(3, 3)
        self.fc3.weight = nn.Parameter(w)
        # self.fc3.bias = nn.init.constant_(self.fc2.bias, val=1.0)
        self.fc3.bias = nn.init.constant_(self.fc3.bias, val=-8.0)
        self.fc4 = torch.nn.Linear(3, 3)
        self.fc4.weight = nn.Parameter(w)
        # self.fc4.bias = nn.init.constant_(self.fc2.bias, val=1.0)
        self.fc4.bias = nn.init.constant_(self.fc4.bias, val=-8.0)
        self.fc5 = torch.nn.Linear(3, output_size)
        w1 = torch.normal(0, 0.01, size=(output_size, 3), requires_grad=True)
        self.fc5.weight = nn.Parameter(w1)
        # self.fc5.bias = nn.init.constant_(self.fc2.bias, val=1.0)
        self.fc5.bias = nn.init.constant_(self.fc5.bias, val=-8.0)
        # 定义网络使用的激活函数
        if act == 'sigmoid':
            self.act = F.sigmoid
        elif act == 'relu':
            self.act = F.relu
        elif act == 'lrelu':
            self.act = F.leaky_relu
        else:
            raise ValueError("Please enter sigmoid relu or lrelu!")


    def forward(self, inputs):
        outputs = self.fc1(inputs.to(torch.float32))
        outputs = self.act(outputs)
        outputs = self.fc2(outputs)
        outputs = self.act(outputs)
        outputs = self.fc3(outputs)
        outputs = self.act(outputs)
        outputs = self.fc4(outputs)
        outputs = self.act(outputs)
        outputs = self.fc5(outputs)
        outputs = F.sigmoid(outputs)
        return outputs

重新训练,输出结果,打印权值:

NNDL 实验五 前馈神经网络(2)自动梯度计算 & 优化问题_第11张图片

NNDL 实验五 前馈神经网络(2)自动梯度计算 & 优化问题_第12张图片

 可以看到出现了负值,与描述中的相同,可以认定已经出现了ReLU死亡现象

改善方法:

将激活函数更换为Leaky ReLU、ELU等ReLU的变种。


实验心得:

这次的实验因为是建立在上次实验的基础之上,所以会比较好上手,torch.nn.Module也让我体会到了pytorch框架功能的强大,同时我这次感受了ReLU激活函数的优缺点,总之收获很大。

你可能感兴趣的:(神经网络,人工智能,深度学习)