欢迎访问我的新博客:http://www.milkcu.com/blog/
原文地址:http://www.milkcu.com/blog/archives/uva10104.html
原创:Euclid Problem - PC110703
作者:MilkCu
题目描述
Euclid Problem |
The Problem
From Euclid it is known that for any positive integers A and Bthere exist such integersX andY that AX+BY=D,where D is the greatest common divisor ofA andB.The problem is to find for given A and B correspondingX,Y and D.
The Input
The input will consist of a set of lines with the integer numbers A andB, separated with space (A,B<1000000001).
The Output
For each input line the output line should consist of threeintegers X, Y andD, separated with space. If there are severalsuchX and Y, you should output that pair for which|X|+|Y| is the minimal (primarily) andX<=Y (secondarily).
Sample Input
4 6 17 17
Sample Output
-1 1 2 0 1 17
解题思路
本题考查的是求解最大公约数(greatest common divisor,也称gcd)的欧几里得(Euclid)算法。
Euclid算法建立在两个事实的基础上:
1. 如果b|a(b整除a),则gcd(a, b) = b;
2. 如果存在整数t和r,使得a = bt + r,则gcd(a, b) = gcd(b, r)。
Euclid算法是递归的,它不停的把较大的整数替换为它除以较小整数的余数。
Euclid算法指出,存在x和y,使
a * x + b * y = gcd(a, b)
又有
gcd(a, b) = gcd(b, a % b)
为了方便计算,我们将上式写为
gcd(a, b) = gcd(b, a - b * floor(a / b))
假设我们已经找到整数x'和y',使得
b * x' + (a - b * floor(a / b)) * y' = gcd(a, b)
整理上式,得到
a * y' + b * (x' - b * floor(a / b) * y') = gcd(a, b)
与a * x + b * y = gcd(a, b)相对应,得到
x = y'
y = x' - floor(a / b) * y'
代码实现
#include
#include
#include
using namespace std;
int gcd(int a, int b, int & x, int & y) {
int x1, y1;
if(a < b) {
return gcd(b, a, y, x);
}
if(b == 0) {
x = 1;
y = 0;
return a;
}
int g = gcd(b, a % b, x1, y1);
x = y1;
y = x1 - floor(a / b) * y1;
return g;
}
int main(void) {
int a, b;
while(cin >> a >> b) {
int x, y;
int g = gcd(a, b, x, y);
cout << x << " " << y << " " << g << endl;
}
return 0;
}
(全文完)
本文地址:http://blog.csdn.net/milkcu/article/details/23590217