**概念:**图优化里的图就是数据结构里的图,一个图由若干个顶点(vertex),以及连接这些顶点的边(edge)组成。
**举例:**一个机器人在房屋里移动,它在某个时刻 t 的位姿(pose)就是一个顶点,这个也是待优化的变量。而位姿之间的关系就构成了一个边,比如时刻 t 和时刻 t+1 之间的相对位姿变换矩阵就是边,边通常表示误差项。
在SLAM里,图优化一般分解为两个任务:
1、构建图。机器人位姿作为顶点,位姿间关系作为边。
2、优化图。调整机器人的位姿(顶点)来尽量满足边的约束,使得误差最小。
以高博在Slam十四讲中的代码为例:
typedef g2o::BlockSolver< g2o::BlockSolverTraits<3,1> > Block; // 每个误差项优化变量维度为3,误差值维度为1
// 第1步:创建一个线性求解器LinearSolver
Block::LinearSolverType* linearSolver = new g2o::LinearSolverDense();
// 第2步:创建BlockSolver。并用上面定义的线性求解器初始化
Block* solver_ptr = new Block( linearSolver );
// 第3步:创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg( solver_ptr );
// 第4步:创建终极大boss 稀疏优化器(SparseOptimizer)
g2o::SparseOptimizer optimizer; // 图模型
optimizer.setAlgorithm( solver ); // 设置求解器
optimizer.setVerbose( true ); // 打开调试输出
// 第5步:定义图的顶点和边。并添加到SparseOptimizer中
CurveFittingVertex* v = new CurveFittingVertex(); //往图中增加顶点
v->setEstimate( Eigen::Vector3d(0,0,0) );
v->setId(0);
optimizer.addVertex( v );
for ( int i=0; isetId(i);
edge->setVertex( 0, v ); // 设置连接的顶点
edge->setMeasurement( y_data[i] ); // 观测数值
edge->setInformation( Eigen::Matrix::Identity()*1/(w_sigma*w_sigma) ); // 信息矩阵:协方差矩阵之逆
optimizer.addEdge( edge );
}
// 第6步:设置优化参数,开始执行优化
optimizer.initializeOptimization();
optimizer.optimize(100);
编写一个图优化的程序需要从底层到顶层逐渐搭建,,步骤可以分为6步:
LinearSolverCholmod :使用sparse cholesky分解法。继承自LinearSolverCCS
LinearSolverCSparse:使用CSparse法。继承自LinearSolverCCS
LinearSolverPCG :使用preconditioned conjugate gradient 法,继承自LinearSolver
LinearSolverDense :使用dense cholesky分解法。继承自LinearSolver
LinearSolverEigen: 依赖项只有eigen,使用eigen中sparse Cholesky 求解,因此编译好后可以方便的在其他地方使用,性能和CSparse差不多。继承自LinearSolver
BlockSolver有两种定义方式:
// 固定变量的solver。 p代表pose的维度(是流形manifold下的最小表示),l表示landmark的维度
using BlockSolverPL = BlockSolver< BlockSolverTraits<p, l> >;
// 可变尺寸的solver。Pose和Landmark在程序开始时并不能确定,所有参数都在中间过程中被确定。
using BlockSolverX = BlockSolverPL<Eigen::Dynamic, Eigen::Dynamic>;
此外g2o还预定义了以下几种常用类型:
在该阶段可以选择GN/LM/DogLeg 这三种方法。
创建稀疏优化器
g2o::SparseOptimizer optimizer;
用前面定义好的求解器作为求解方法:
SparseOptimizer::setAlgorithm(OptimizationAlgorithm* algorithm)
其中setVerbose是设置优化过程输出信息用的
SparseOptimizer::setVerbose(bool verbose)
一:先来看看g2o整体图中和vertex有关的第①个类: HyperGraph::Vertex。它在这个路径g2o/core/hyper_graph.h。 HyperGraph::Vertex 是个abstract vertex,必须通过派生来使用。
二:图中第②个类,我们看到HyperGraph::Vertex 是通过类OptimizableGraph 来继承的, 而OptimizableGraph的定义在g2o/core/optimizable_graph.h。我们找到vertex定义,发现果然,OptimizableGraph 继承自 HyperGraph。
三:OptimizableGraph::Vertex 非常底层,具体使用时一般都会进行扩展,因此g2o中提供了一个比较通用的适合大部分情况的模板。就是g2o 类结构图中 对应的第③个类:BaseVertex 路径:g2o/core/base_vertex.h
BaseVertex
参数
static const int Dimension = D; ///< dimension of the estimate (minimal) in the manifold space
**D:**并非是顶点(更确切的说是状态变量)的维度,而是其在流形空间(manifold)的最小表示,这里一定要区别开.
typedef T EstimateType;
EstimateType _estimate;
**T:**从这里看到就是顶点(状态变量)的类型.
g2o内部已经给我们定义一些常用的顶点。
VertexSE2 : public BaseVertex<3, SE2> //2D pose Vertex, (x,y,theta)
VertexSE3 : public BaseVertex<6, Isometry3> //6d vector (x,y,z,qx,qy,qz) (note that we leave out the w part of the quaternion)
VertexPointXY : public BaseVertex<2, Vector2>
VertexPointXYZ : public BaseVertex<3, Vector3>
VertexSBAPointXYZ : public BaseVertex<3, Vector3>
// SE3 Vertex parameterized internally with a transformation matrix and externally with its exponential map
VertexSE3Expmap : public BaseVertex<6, SE3Quat>
// SBACam Vertex, (x,y,z,qw,qx,qy,qz),(x,y,z,qx,qy,qz) (note that we leave out the w part of the quaternion.
// qw is assumed to be positive, otherwise there is an ambiguity in qx,qy,qz as a rotation
VertexCam : public BaseVertex<6, SBACam>
// Sim3 Vertex, (x,y,z,qw,qx,qy,qz),7d vector,(x,y,z,qx,qy,qz) (note that we leave out the w part of the quaternion.
VertexSim3Expmap : public BaseVertex<7, Sim3>
如果内置的顶点中没有我们需要的,那么需要进行自定义,自定义顶点一般需要考虑重写如下函数:
virtual bool read(std::istream& is);
virtual bool write(std::ostream& os) const;
// 分别是读盘、存盘函数,一般情况下不需要进行读/写操作的话,仅仅声明一下就可以
virtual void oplusImpl(const number_t* update);
//顶点更新函数
virtual void setToOriginImpl();
//顶点重置函数,设定被优化变量的原始值。
自定义的顶点实例代码(高博Slam十四讲):
class CurveFittingVertex: public g2o::BaseVertex<3, Eigen::Vector3d>
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
virtual void setToOriginImpl() // 重置
{
_estimate << 0,0,0;
}
virtual void oplusImpl( const double* update ) // 更新
{
_estimate += Eigen::Vector3d(update);
}
// 存盘和读盘:留空
virtual bool read( istream& in ) {}
virtual bool write( ostream& out ) const {}
};
图优化中的边:BaseUnaryEdge,BaseBinaryEdge,BaseMultiEdge 分别表示一元边,两元边,多元边。
一元边可以理解为一条边只连接一个顶点,两元边理解为一条边连接两个顶点(常见),多元边理解为一条边可以连接多个(3个以上)顶点。
参数:
实例:
BaseBinaryEdge<2, Vector2D, VertexSBAPointXYZ, VertexSE3Expmap>
这是个二元边。测量值是2维的,对应测量值的类型是Vector2D,两个顶点也就是优化变量分别是三维点 VertexSBAPointXYZ,和李群位姿VertexSE3Expmap
自定义边:
自定义边需要重写以下的函数:
virtual bool read(std::istream& is);
virtual bool write(std::ostream& os) const;
// 分别是读盘、存盘函数,一般情况下不需要进行读/写操作的话,仅仅声明一下就可以
virtual void computeError();
// 非常重要,是使用当前顶点值计算的测量值与真实测量值之间的误差
virtual void linearizeOplus();
// 非常重要,是在当前顶点的值下,该误差对优化变量的偏导数,也就是Jacobian矩阵
自定义边的实例代码(高博Slam十四讲课):
// 误差模型 模板参数:观测值维度,类型,连接顶点类型
class CurveFittingEdge : public g2o::BaseUnaryEdge<1, double, CurveFittingVertex> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
CurveFittingEdge(double x) : BaseUnaryEdge(), _x(x) {}
// 计算曲线模型误差
virtual void computeError() override {
const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);
const Eigen::Vector3d abc = v->estimate();
_error(0, 0) = _measurement - std::exp(abc(0, 0) * _x * _x + abc(1, 0) * _x + abc(2, 0));
}
// 计算雅可比矩阵
virtual void linearizeOplus() override {
const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);
const Eigen::Vector3d abc = v->estimate();
double y = exp(abc[0] * _x * _x + abc[1] * _x + abc[2]);
_jacobianOplusXi[0] = -_x * _x * y;
_jacobianOplusXi[1] = -_x * y;
_jacobianOplusXi[2] = -y;
}
virtual bool read(istream &in) {}
virtual bool write(ostream &out) const {}
public:
double _x; // x 值, y 值为 _measurement
};
对边中重要的成员变量和函数进行简单介绍:
_measurement:存储观测值
_error:存储computeError() 函数计算的误差
_vertices[]:存储顶点信息,比如二元边的话,_vertices[] 的大小为2,存储顺序和调用setVertex(int, vertex) 是设定的int 有关(0 或1)
setId(int):来定义边的编号(决定了在H矩阵中的位置)
setMeasurement(type) 函数来定义观测值
setVertex(int, vertex) 通过顶点编号来定义顶点
setInformation() 来定义协方差矩阵的逆
在设置边对应顶点的时候可以
edge->vertices()[0]=v;
也可以
edge->setVertex(0, v);
参数中表示顶点的编号。
设置SparseOptimizer的初始化、迭代次数、保存结果等。
初始化
SparseOptimizer::initializeOptimization(HyperGraph::EdgeSet& eset)
设置迭代次数,然后就开始执行图优化了。
SparseOptimizer::optimize(int iterations, bool online)
参考: