g2o(General Graphic Optimization)是一个基于图优化的库,将非线性优化与图论结合起来的理论,我们可以利用g2o求解任何可以表示为图优化的最小二乘问题。
图优化就是把优化问题表现成图的方式。图由顶点和边组成,其中顶点表示优化变量,边表示误差项,对任意一个非线性?> 最小二乘问题,我们都可以构建与之对应的图。
(注:这里的图是图论意义上的图,可以用概率论里面的定义,贝叶斯图或因子图。)
首先安装g2o的依赖
sudo apt install qt5-qmake qt5-default libqglviewer-dev-qt5 libsuitesparse-dev libcxsparse3 libcholmod3
然后到github下clone此工程,然后编译安装,指令如下:
git clone https://github.com/RainerKuemmerle/g2o.git
cd g2o/
mkdir build
cd build
cmake ../
make
g2o的头文件在/usr/local/g2o
下,库文件在/usr.local/lib
下。
① 定义顶点和边的类型(优化变量与误差项)
② 构建图
③ 选择优化算法
④ 调用g2o进行优化,返回结果
此示例程序还依赖opencv、Eigen、Ceres库,需要预先安装。
main.cpp文件:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
// 曲线模型的顶点(优化变量)(参数:维度、数据类型)
// 优化变量维数:3维 数据类型:Eigen::Vector3d
class CurveFittingVertex : public g2o::BaseVertex<3, Eigen::Vector3d> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW // 字节对齐
// 重置
virtual void setToOriginImpl() override {
_estimate << 0, 0, 0; // 设定被优化变量的原始值、重置成员函数的估计值
}
//更新
virtual void oplusImpl(const double *update) override {
_estimate += Eigen::Vector3d(update); // 更新优化变量(估计值)。增量方程计算出增量△x后,通过此函数对估计值进行调整
}
//读盘
virtual bool read(istream &in) {}
//存盘
virtual bool write(ostream &out) const {}
};
// 曲线模型的边(误差项)(参数:观测值维度、类型、连接定点类型)
// 边的模型:BaseUnaryEdge 连接顶点个数:1 测量值数据类型:double 顶点类型:CurveFittingVertex
class CurveFittingEdge : public g2o::BaseUnaryEdge<1, double, CurveFittingVertex> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
CurveFittingEdge(double x):BaseUnaryEdge(),_x(x) {}
// 计算曲线模型误差
virtual void computeError() override {
const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]); // _vertices[]存储顶点信息
const Eigen::Vector3d abc = v->estimate();
_error(0, 0) = _measurement - std::exp(abc(0, 0) * _x * _x + abc(1,0) * _x + abc(2, 0)); // _error存储computeError()函数计算的误差
}
// 计算雅克比矩阵
virtual void linearizeOplus() override {
const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);
const Eigen::Vector3d abc = v->estimate();
double y = exp(abc[0] * _x * _x + abc[1] * _x + abc[2]);
_jacobianOplusXi[0] = -_x * _x * y;
_jacobianOplusXi[1] = -_x * y;
_jacobianOplusXi[2] = -y;
}
virtual bool read(istream &in) {}
virtual bool write(ostream &out) const {}
public:
double _x; //x值;(y值为_measurement测量值)
};
int main() {
//定义数据参数
double ar = 1.0, br = 2.0, cr = 1.0; //真实参数值
double ae = 2.0, be = -1.0, ce = 5.0; //估计参数值
int N = 100; //数据点个数
double w_sigma = 1.0; //噪声Sigma值
double inv_sigma = 1.0 / w_sigma;
cv::RNG rng; //随机数产生器
//生成100个带高斯噪声的数据
vector<double> x_data, y_data;
for (int i = 0; i < N; i++){
double x = i / 100.0;
x_data.push_back(x);
y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));
}
// 构建图优化
typedef g2o::BlockSolver<g2o::BlockSolverTraits<3, 1>> BlockSolverType; // 配置BlockSolver,每个误差项优化变量维度为3,误差值维度为1
typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 创建BlockSolver,并用定义的线性求解器初始化
// 设置梯度下降的方法,创建总求解器solver
auto solver = new g2o::OptimizationAlgorithmGaussNewton(g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
g2o::SparseOptimizer optimizer; //创建系数优化器
optimizer.setAlgorithm(solver); //设置求解方法
optimizer.setVerbose(true); //打开调试输出
// 图中加入顶点
CurveFittingVertex *v = new CurveFittingVertex();
v->setEstimate(Eigen::Vector3d(ae, be, ce));
v->setId(0);
optimizer.addVertex(v);
// 图中加入边
for(int i = 0; i < N; i++){
CurveFittingEdge *edge = new CurveFittingEdge(x_data[i]);
edge->setId(i); //定义边的编号(决定在H矩阵中的位置)
edge->setVertex(0, v); //设置连接的顶点
edge->setMeasurement(y_data[i]); //设置观测值
edge->setInformation(Eigen::Matrix<double, 1, 1>::Identity() * 1 / (w_sigma * w_sigma)); //信息矩阵:协方差矩阵的逆
optimizer.addEdge(edge);
}
// 执行优化
cout << "Start optimization" << endl;
chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); //记录算法执行时间
optimizer.initializeOptimization(); //初始化
optimizer.optimize(10); //执行10次
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "Solve time cost = " << time_used.count() << " s." << endl;
Eigen::Vector3d abc_estimate = v->estimate(); //获取当前值
cout << "estimated model: " << abc_estimate.transpose() << endl;
return 0;
}
CMakeLists.txt文件:
cmake_minimum_required(VERSION 3.20)
project(g2oCurveFitting)
set(CMAKE_CXX_STANDARD 14)
# OpenCV库
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
# Eigen库
include_directories("/usr/include/eigen3")
# Ceres库
find_package(Ceres REQUIRED)
include_directories(${CERES_INCLUDE_DIRS})
# g2o库
list( APPEND CMAKE_MODULE_PATH /home/huffie/slam/3rdparty/g2o/cmake_modules ) #刚才clone的项目文件夹
set(G2O_ROOT /usr/local/include/g2o)
find_package(G2O REQUIRED)
include_directories(${G2O_INCLUDE_DIRS})
add_executable(g2oCurveFitting main.cpp)
target_link_libraries(g2oCurveFitting ${OpenCV_LIBS})
target_link_libraries(g2oCurveFitting g2o_stuff g2o_core )
target_link_libraries(g2oCurveFitting ${CERES_LIBRARIES})