神经网络与深度学习作业9:分别使用numpy和pytorch实现BPTT

神经网络与深度学习作业9:分别使用numpy和pytorch实现BPTT

  • 6-1P:推导RNN反向传播算法BPTT.
  • 6-2P:设计简单RNN模型,分别用Numpy、Pytorch实现反向传播算子,并代入数值测试.
  • 总结
  • References:


6-1P:推导RNN反向传播算法BPTT.

神经网络与深度学习作业9:分别使用numpy和pytorch实现BPTT_第1张图片
神经网络与深度学习作业9:分别使用numpy和pytorch实现BPTT_第2张图片
神经网络与深度学习作业9:分别使用numpy和pytorch实现BPTT_第3张图片
神经网络与深度学习作业9:分别使用numpy和pytorch实现BPTT_第4张图片

手动推导实现:

6-2P:设计简单RNN模型,分别用Numpy、Pytorch实现反向传播算子,并代入数值测试.

代码实现:

def rnn_forward(x, a0, parameters):
    """
    Implement the forward propagation of the recurrent neural network described in Figure (3).

    Arguments:
    x -- Input data for every time-step, of shape (n_x, m, T_x).
    a0 -- Initial hidden state, of shape (n_a, m)
    parameters -- python dictionary containing:
                        Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)
                        Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)
                        Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                        ba --  Bias numpy array of shape (n_a, 1)
                        by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)

    Returns:
    a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x)
    y_pred -- Predictions for every time-step, numpy array of shape (n_y, m, T_x)
    caches -- tuple of values needed for the backward pass, contains (list of caches, x)
    """

    # Initialize "caches" which will contain the list of all caches
    caches = []

    # Retrieve dimensions from shapes of x and Wy
    n_x, m, T_x = x.shape
    n_y, n_a = parameters["Wya"].shape

    ### START CODE HERE ###

    # initialize "a" and "y" with zeros (≈2 lines)
    a = np.zeros((n_a, m, T_x))
    y_pred = np.zeros((n_y, m, T_x))

    # Initialize a_next (≈1 line)
    a_next = a0

    # loop over all time-steps
    for t in range(T_x):
        # Update next hidden state, compute the prediction, get the cache (≈1 line)
        a_next, yt_pred, cache = rnn_cell_forward(x[:, :, t], a_next, parameters)
        # Save the value of the new "next" hidden state in a (≈1 line)
        a[:, :, t] = a_next
        # Save the value of the prediction in y (≈1 line)
        y_pred[:, :, t] = yt_pred
        # Append "cache" to "caches" (≈1 line)
        caches.append(cache)

    ### END CODE HERE ###

    # store values needed for backward propagation in cache
    caches = (caches, x)

    return a, y_pred, caches


def rnn_backward(da, caches):
    """
    Implement the backward pass for a RNN over an entire sequence of input data.

    Arguments:
    da -- Upstream gradients of all hidden states, of shape (n_a, m, T_x)
    caches -- tuple containing information from the forward pass (rnn_forward)

    Returns:
    gradients -- python dictionary containing:
                        dx -- Gradient w.r.t. the input data, numpy-array of shape (n_x, m, T_x)
                        da0 -- Gradient w.r.t the initial hidden state, numpy-array of shape (n_a, m)
                        dWax -- Gradient w.r.t the input's weight matrix, numpy-array of shape (n_a, n_x)
                        dWaa -- Gradient w.r.t the hidden state's weight matrix, numpy-arrayof shape (n_a, n_a)
                        dba -- Gradient w.r.t the bias, of shape (n_a, 1)
    """

    ### START CODE HERE ###
    # Retrieve values from the first cache (t=1) of caches (≈2 lines)
    (caches, x) = caches
    (a1, a0, x1, parameters) = caches[0]  # t=1 时的值

    # Retrieve dimensions from da's and x1's shapes (≈2 lines)
    n_a, m, T_x = da.shape
    n_x, m = x1.shape

    # initialize the gradients with the right sizes (≈6 lines)
    dx = np.zeros((n_x, m, T_x))
    dWax = np.zeros((n_a, n_x))
    dWaa = np.zeros((n_a, n_a))
    dba = np.zeros((n_a, 1))
    da0 = np.zeros((n_a, m))
    da_prevt = np.zeros((n_a, m))

    # Loop through all the time steps
    for t in reversed(range(T_x)):
        # Compute gradients at time step t. Choose wisely the "da_next" and the "cache" to use in the backward propagation step. (≈1 line)
        gradients = rnn_cell_backward(da[:, :, t] + da_prevt, caches[t])  # da[:,:,t] + da_prevt ,每一个时间步后更新梯度
        # Retrieve derivatives from gradients (≈ 1 line)
        dxt, da_prevt, dWaxt, dWaat, dbat = gradients["dxt"], gradients["da_prev"], gradients["dWax"], gradients[
            "dWaa"], gradients["dba"]
        # Increment global derivatives w.r.t parameters by adding their derivative at time-step t (≈4 lines)
        dx[:, :, t] = dxt
        dWax += dWaxt
        dWaa += dWaat
        dba += dbat

    # Set da0 to the gradient of a which has been backpropagated through all time-steps (≈1 line)
    da0 = da_prevt
    ### END CODE HERE ###

    # Store the gradients in a python dictionary
    gradients = {"dx": dx, "da0": da0, "dWax": dWax, "dWaa": dWaa, "dba": dba}

    return gradients
np.random.seed(1)
x = np.random.randn(3,10,4)
a0 = np.random.randn(5,10)
Wax = np.random.randn(5,3)
Waa = np.random.randn(5,5)
Wya = np.random.randn(2,5)
ba = np.random.randn(5,1)
by = np.random.randn(2,1)
parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "ba": ba, "by": by}
a, y, caches = rnn_forward(x, a0, parameters)
da = np.random.randn(5, 10, 4)
gradients = rnn_backward(da, caches)

print("gradients[\"dx\"][1][2] =", gradients["dx"][1][2])
print("gradients[\"dx\"].shape =", gradients["dx"].shape)
print("gradients[\"da0\"][2][3] =", gradients["da0"][2][3])
print("gradients[\"da0\"].shape =", gradients["da0"].shape)
print("gradients[\"dWax\"][3][1] =", gradients["dWax"][3][1])
print("gradients[\"dWax\"].shape =", gradients["dWax"].shape)
print("gradients[\"dWaa\"][1][2] =", gradients["dWaa"][1][2])
print("gradients[\"dWaa\"].shape =", gradients["dWaa"].shape)
print("gradients[\"dba\"][4] =", gradients["dba"][4])
print("gradients[\"dba\"].shape =", gradients["dba"].shape)

神经网络与深度学习作业9:分别使用numpy和pytorch实现BPTT_第5张图片
RNN_Cell_Backword:

import numpy as np
import torch.nn


# GRADED FUNCTION: rnn_forward
# GRADED FUNCTION: rnn_cell_forward
def softmax(a):
    exp_a = np.exp(a)
    sum_exp_a = np.sum(exp_a)
    y = exp_a / sum_exp_a
    return y

def rnn_cell_forward(xt, a_prev, parameters):
    """
    Implements a single forward step of the RNN-cell as described in Figure (2)

    Arguments:
    xt -- your input data at timestep "t", numpy array of shape (n_x, m).
    a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m)
    parameters -- python dictionary containing:
                        Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)
                        Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)
                        Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                        ba --  Bias, numpy array of shape (n_a, 1)
                        by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
    Returns:
    a_next -- next hidden state, of shape (n_a, m)
    yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m)
    cache -- tuple of values needed for the backward pass, contains (a_next, a_prev, xt, parameters)
    """

    # Retrieve parameters from "parameters"
    Wax = parameters["Wax"]
    Waa = parameters["Waa"]
    Wya = parameters["Wya"]
    ba = parameters["ba"]
    by = parameters["by"]

    ### START CODE HERE ### (≈2 lines)
    # compute next activation state using the formula given above
    a_next = np.tanh(np.dot(Wax, xt) + np.dot(Waa, a_prev) + ba)
    # compute output of the current cell using the formula given above
    yt_pred = softmax(np.dot(Wya, a_next) + by)
    ### END CODE HERE ###
    # store values you need for backward propagation in cache
    cache = (a_next, a_prev, xt, parameters)

    return a_next, yt_pred, cache


def rnn_cell_backward(da_next, cache):
    """
    Implements the backward pass for the RNN-cell (single time-step).

    Arguments:
    da_next -- Gradient of loss with respect to next hidden state
    cache -- python dictionary containing useful values (output of rnn_step_forward())

    Returns:
    gradients -- python dictionary containing:
                        dx -- Gradients of input data, of shape (n_x, m)
                        da_prev -- Gradients of previous hidden state, of shape (n_a, m)
                        dWax -- Gradients of input-to-hidden weights, of shape (n_a, n_x)
                        dWaa -- Gradients of hidden-to-hidden weights, of shape (n_a, n_a)
                        dba -- Gradients of bias vector, of shape (n_a, 1)
    """

    # Retrieve values from cache
    (a_next, a_prev, xt, parameters) = cache

    # Retrieve values from parameters
    Wax = parameters["Wax"]
    Waa = parameters["Waa"]
    Wya = parameters["Wya"]
    ba = parameters["ba"]
    by = parameters["by"]

    ### START CODE HERE ###
    # compute the gradient of tanh with respect to a_next (≈1 line)
    dtanh = (1 - a_next * a_next) * da_next  # 注意这里是 element_wise ,即 * da_next,dtanh 可以只看做一个中间结果的表示方式

    # compute the gradient of the loss with respect to Wax (≈2 lines)
    dxt = np.dot(Wax.T, dtanh)
    dWax = np.dot(dtanh, xt.T)
    # 根据公式1、2, dxt =  da_next .(  Wax.T  . (1- tanh(a_next)**2) ) = da_next .(  Wax.T  . dtanh * (1/d_a_next) )= Wax.T  . dtanh
    # 根据公式1、3, dWax =  da_next .( (1- tanh(a_next)**2) . xt.T) = da_next .(  dtanh * (1/d_a_next) . xt.T )=  dtanh . xt.T
    # 上面的 . 表示 np.dot

    # compute the gradient with respect to Waa (≈2 lines)
    da_prev = np.dot(Waa.T, dtanh)
    dWaa = np.dot(dtanh, a_prev.T)

    # compute the gradient with respect to b (≈1 line)
    dba = np.sum(dtanh, keepdims=True, axis=-1)  # axis=0 列方向上操作 axis=1 行方向上操作  keepdims=True 矩阵的二维特性

    ### END CODE HERE ###

    # Store the gradients in a python dictionary
    gradients = {"dxt": dxt, "da_prev": da_prev, "dWax": dWax, "dWaa": dWaa, "dba": dba}

    return gradients


# GRADED FUNCTION: rnn_forward
np.random.seed(1)
xt = np.random.randn(3,10)
a_prev = np.random.randn(5,10)
Wax = np.random.randn(5,3)
Waa = np.random.randn(5,5)
Wya = np.random.randn(2,5)
ba = np.random.randn(5,1)
by = np.random.randn(2,1)
parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "ba": ba, "by": by}

a_next, yt, cache = rnn_cell_forward(xt, a_prev, parameters)

da_next = np.random.randn(5,10)
gradients = rnn_cell_backward(da_next, cache)
print("gradients[\"dxt\"][1][2] =", gradients["dxt"][1][2])
print("gradients[\"dxt\"].shape =", gradients["dxt"].shape)
print("gradients[\"da_prev\"][2][3] =", gradients["da_prev"][2][3])
print("gradients[\"da_prev\"].shape =", gradients["da_prev"].shape)
print("gradients[\"dWax\"][3][1] =", gradients["dWax"][3][1])
print("gradients[\"dWax\"].shape =", gradients["dWax"].shape)
print("gradients[\"dWaa\"][1][2] =", gradients["dWaa"][1][2])
print("gradients[\"dWaa\"].shape =", gradients["dWaa"].shape)
print("gradients[\"dba\"][4] =", gradients["dba"][4])
print("gradients[\"dba\"].shape =", gradients["dba"].shape)
gradients["dxt"][1][2] = -0.4605641030588796
gradients["dxt"].shape = (3, 10)
gradients["da_prev"][2][3] = 0.08429686538067724
gradients["da_prev"].shape = (5, 10)
gradients["dWax"][3][1] = 0.39308187392193034
gradients["dWax"].shape = (5, 3)
gradients["dWaa"][1][2] = -0.28483955786960663
gradients["dWaa"].shape = (5, 5)
gradients["dba"][4] = [0.80517166]
gradients["dba"].shape = (5, 1)




神经网络与深度学习作业9:分别使用numpy和pytorch实现BPTT_第6张图片

下面对numpy和torch两个版本进行比较:

import torch
import numpy as np


class RNNCell:
    def __init__(self, weight_ih, weight_hh,
                 bias_ih, bias_hh):
        self.weight_ih = weight_ih
        self.weight_hh = weight_hh
        self.bias_ih = bias_ih
        self.bias_hh = bias_hh

        self.x_stack = []
        self.dx_list = []
        self.dw_ih_stack = []
        self.dw_hh_stack = []
        self.db_ih_stack = []
        self.db_hh_stack = []

        self.prev_hidden_stack = []
        self.next_hidden_stack = []

        # temporary cache
        self.prev_dh = None

    def __call__(self, x, prev_hidden):
        self.x_stack.append(x)

        next_h = np.tanh(
            np.dot(x, self.weight_ih.T)
            + np.dot(prev_hidden, self.weight_hh.T)
            + self.bias_ih + self.bias_hh)

        self.prev_hidden_stack.append(prev_hidden)
        self.next_hidden_stack.append(next_h)
        # clean cache
        self.prev_dh = np.zeros(next_h.shape)
        return next_h

    def backward(self, dh):
        x = self.x_stack.pop()
        prev_hidden = self.prev_hidden_stack.pop()
        next_hidden = self.next_hidden_stack.pop()

        d_tanh = (dh + self.prev_dh) * (1 - next_hidden ** 2)
        self.prev_dh = np.dot(d_tanh, self.weight_hh)

        dx = np.dot(d_tanh, self.weight_ih)
        self.dx_list.insert(0, dx)

        dw_ih = np.dot(d_tanh.T, x)
        self.dw_ih_stack.append(dw_ih)

        dw_hh = np.dot(d_tanh.T, prev_hidden)
        self.dw_hh_stack.append(dw_hh)

        self.db_ih_stack.append(d_tanh)
        self.db_hh_stack.append(d_tanh)

        return self.dx_list


if __name__ == '__main__':
    np.random.seed(123)
    torch.random.manual_seed(123)
    np.set_printoptions(precision=6, suppress=True)

    rnn_PyTorch = torch.nn.RNN(4, 5).double()
    rnn_numpy = RNNCell(rnn_PyTorch.all_weights[0][0].data.numpy(),
                        rnn_PyTorch.all_weights[0][1].data.numpy(),
                        rnn_PyTorch.all_weights[0][2].data.numpy(),
                        rnn_PyTorch.all_weights[0][3].data.numpy())

    nums = 3
    x3_numpy = np.random.random((nums, 3, 4))
    x3_tensor = torch.tensor(x3_numpy, requires_grad=True)

    h3_numpy = np.random.random((1, 3, 5))
    h3_tensor = torch.tensor(h3_numpy, requires_grad=True)

    dh_numpy = np.random.random((nums, 3, 5))
    dh_tensor = torch.tensor(dh_numpy, requires_grad=True)

    h3_tensor = rnn_PyTorch(x3_tensor, h3_tensor)
    h_numpy_list = []

    h_numpy = h3_numpy[0]
    for i in range(nums):
        h_numpy = rnn_numpy(x3_numpy[i], h_numpy)
        h_numpy_list.append(h_numpy)

    h3_tensor[0].backward(dh_tensor)
    for i in reversed(range(nums)):
        rnn_numpy.backward(dh_numpy[i])

    print("numpy_hidden :\n", np.array(h_numpy_list))
    print("tensor_hidden :\n", h3_tensor[0].data.numpy())
    print("------")

    print("dx_numpy :\n", np.array(rnn_numpy.dx_list))
    print("dx_tensor :\n", x3_tensor.grad.data.numpy())
    print("------")

    print("dw_ih_numpy :\n",
          np.sum(rnn_numpy.dw_ih_stack, axis=0))
    print("dw_ih_tensor :\n",
          rnn_PyTorch.all_weights[0][0].grad.data.numpy())
    print("------")

    print("dw_hh_numpy :\n",
          np.sum(rnn_numpy.dw_hh_stack, axis=0))
    print("dw_hh_tensor :\n",
          rnn_PyTorch.all_weights[0][1].grad.data.numpy())
    print("------")

    print("db_ih_numpy :\n",
          np.sum(rnn_numpy.db_ih_stack, axis=(0, 1)))
    print("db_ih_tensor :\n",
          rnn_PyTorch.all_weights[0][2].grad.data.numpy())
    print("------")
    print("db_hh_numpy :\n",
          np.sum(rnn_numpy.db_hh_stack, axis=(0, 1)))
    print("db_hh_tensor :\n",
          rnn_PyTorch.all_weights[0][3].grad.data.numpy())

    """
    代码输出
    numpy_hidden :
     [[[ 0.4686   -0.298203  0.741399 -0.446474  0.019391]
      [ 0.365172 -0.361254  0.426838 -0.448951  0.331553]
      [ 0.589187 -0.188248  0.684941 -0.45859   0.190099]]
    
     [[ 0.146213 -0.306517  0.297109  0.370957 -0.040084]
      [-0.009201 -0.365735  0.333659  0.486789  0.061897]
      [ 0.030064 -0.282985  0.42643   0.025871  0.026388]]
    
     [[ 0.225432 -0.015057  0.116555  0.080901  0.260097]
      [ 0.368327  0.258664  0.357446  0.177961  0.55928 ]
      [ 0.103317 -0.029123  0.182535  0.216085  0.264766]]]
    tensor_hidden :
     [[[ 0.4686   -0.298203  0.741399 -0.446474  0.019391]
      [ 0.365172 -0.361254  0.426838 -0.448951  0.331553]
      [ 0.589187 -0.188248  0.684941 -0.45859   0.190099]]
    
     [[ 0.146213 -0.306517  0.297109  0.370957 -0.040084]
      [-0.009201 -0.365735  0.333659  0.486789  0.061897]
      [ 0.030064 -0.282985  0.42643   0.025871  0.026388]]
    
     [[ 0.225432 -0.015057  0.116555  0.080901  0.260097]
      [ 0.368327  0.258664  0.357446  0.177961  0.55928 ]
      [ 0.103317 -0.029123  0.182535  0.216085  0.264766]]]
    ------
    dx_numpy :
     [[[-0.643965  0.215931 -0.476378  0.072387]
      [-1.221727  0.221325 -0.757251  0.092991]
      [-0.59872  -0.065826 -0.390795  0.037424]]
    
     [[-0.537631 -0.303022 -0.364839  0.214627]
      [-0.815198  0.392338 -0.564135  0.217464]
      [-0.931365 -0.254144 -0.561227  0.164795]]
    
     [[-1.055966  0.249554 -0.623127  0.009784]
      [-0.45858   0.108994 -0.240168  0.117779]
      [-0.957469  0.315386 -0.616814  0.205634]]]
    dx_tensor :
     [[[-0.643965  0.215931 -0.476378  0.072387]
      [-1.221727  0.221325 -0.757251  0.092991]
      [-0.59872  -0.065826 -0.390795  0.037424]]
    
     [[-0.537631 -0.303022 -0.364839  0.214627]
      [-0.815198  0.392338 -0.564135  0.217464]
      [-0.931365 -0.254144 -0.561227  0.164795]]
    
     [[-1.055966  0.249554 -0.623127  0.009784]
      [-0.45858   0.108994 -0.240168  0.117779]
      [-0.957469  0.315386 -0.616814  0.205634]]]
    ------
    dw_ih_numpy :
     [[ 3.918335  2.958509  3.725173  4.157478]
     [ 1.261197  0.812825  1.10621   0.97753 ]
     [ 2.216469  1.718251  2.366936  2.324907]
     [ 3.85458   3.052212  3.643157  3.845696]
     [ 1.806807  1.50062   1.615917  1.521762]]
    dw_ih_tensor :
     [[ 3.918335  2.958509  3.725173  4.157478]
     [ 1.261197  0.812825  1.10621   0.97753 ]
     [ 2.216469  1.718251  2.366936  2.324907]
     [ 3.85458   3.052212  3.643157  3.845696]
     [ 1.806807  1.50062   1.615917  1.521762]]
    ------
    dw_hh_numpy :
     [[ 2.450078  0.243735  4.269672  0.577224  1.46911 ]
     [ 0.421015  0.372353  0.994656  0.962406  0.518992]
     [ 1.079054  0.042843  2.12169   0.863083  0.757618]
     [ 2.225794  0.188735  3.682347  0.934932  0.955984]
     [ 0.660546 -0.321076  1.554888  0.833449  0.605201]]
    dw_hh_tensor :
     [[ 2.450078  0.243735  4.269672  0.577224  1.46911 ]
     [ 0.421015  0.372353  0.994656  0.962406  0.518992]
     [ 1.079054  0.042843  2.12169   0.863083  0.757618]
     [ 2.225794  0.188735  3.682347  0.934932  0.955984]
     [ 0.660546 -0.321076  1.554888  0.833449  0.605201]]
    ------
    db_ih_numpy :
     [ 7.568411  2.175445  4.335336  6.820628  3.51003 ]
    db_ih_tensor :
     [ 7.568411  2.175445  4.335336  6.820628  3.51003 ]
    ------
    db_hh_numpy :
     [ 7.568411  2.175445  4.335336  6.820628  3.51003 ]
    db_hh_tensor :
     [ 7.568411  2.175445  4.335336  6.820628  3.51003 ]
    """

神经网络与深度学习作业9:分别使用numpy和pytorch实现BPTT_第7张图片


总结

通过此次对于BPTT的反向传播推导,之前一直有不理解的地方,然后又查了好多博客,看了看他们的推导,才写出来,当中发现他们推导的确是很细致和详细,我在参考文献中放入几个推导好的文章可以看一下。

References:

纯Python和PyTorch对比实现循环神经网络RNN及反向传播
循环神经网络RNNCell单元详解及反向传播的梯度求导手推
手推RNN反向传播
L5W1作业1 手把手实现循环神经网络
老师的博客:
NNDL 作业9:分别使用numpy和pytorch实现BPTT

你可能感兴趣的:(深度学习,pytorch,numpy)