- 仓库货物检测:基于YOLOv5的深度学习应用与UI界面开发
YOLO实战营
YOLO深度学习ui目标跟踪目标检测人工智能
一、引言随着电商和物流行业的快速发展,仓库货物管理已经成为企业运营中至关重要的环节。为了提高仓库管理的效率和准确性,越来越多的企业开始应用自动化技术来完成货物的盘点、分类、分拣等任务。传统的货物管理方式通常依赖人工检查,不仅效率低下,而且容易出现误差。为了克服这些问题,利用计算机视觉和深度学习技术来实现仓库货物的自动化检测成为了一种有效的解决方案。本博客将介绍如何使用YOLOv5进行仓库货物检测,
- 【云原生】Helm来管理Kubernetes集群的详细使用方法与综合应用实战
景天科技苑
云原生K8S零基础到进阶实战云原生kubernetes容器Helmk8sk8s集群
✨✨欢迎大家来到景天科技苑✨✨养成好习惯,先赞后看哦~作者简介:景天科技苑《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi,flask等框架,云原生k8s,linux,she
- Transformer:自注意力驱动的神经网络革命引擎
大千AI助手
人工智能Python#OTHERtransformer神经网络深度学习google人工智能机器学习大模型
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从语言理解到多模态智能的通用架构基石⚙️一、核心定义与历史意义Transformer是由Google团队在2017年论文《AttentionIsAllYouNeed》中提出的深度学习架构,其颠覆性创新在于:完全摒弃RNN/CNN:仅依赖自注意力机制(S
- [特殊字符] LLM(大型语言模型):智能时代的语言引擎与通用推理基座
大千AI助手
人工智能Python#OTHER语言模型人工智能自然语言处理LLM大模型Transformer
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从千亿参数到人类认知的AI革命一、核心定义与核心特征LLM(LargeLanguageModel)是基于海量文本数据训练的深度学习模型,通过神经网络架构(尤其是Transformer)模拟人类语言的复杂规律,实现文本理解、生成与推理任务。其核心特征可概
- 深度学习模型开发部署全流程:以YOLOv11目标检测任务为例
你喜欢喝可乐吗?
deeplearningdeploy深度学习YOLO目标检测
深度学习模型开发部署全流程:以YOLOv11目标检测任务为例深度学习模型从开发到部署的完整流程包含需求分析、数据准备、模型训练、模型优化、模型测试和部署运行六大核心环节。YOLOv11作为新一代目标检测模型,不仅延续了YOLO系列的高效实时性能,还在检测精度和泛化能力上取得显著突破,使其成为工业质检、安防监控、自动驾驶等领域的理想选择。本文将详细阐述这一完整流程,并结合YOLOv11的具体实现,提
- 预测导管原位癌浸润性复发的深度学习:利用组织病理学图像和临床特征
浪漫的诗人
论文深度学习人工智能
文章目录研究内容目的方法数据集模型开发模型训练与评估外部验证统计分析研究结果模型性能风险分层外部验证特征重要性原文链接原文献:Deeplearningforpredictinginvasiverecurrenceofductalcarcinomainsitu:leveraginghistopathologyimagesandclinicalfeatures研究背景【DCIS与IBC的关联】乳腺导管
- Python面向对象编程(OOP)详解:通俗易懂的全面指南
盛夏绽放
python开发语言有问必答
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。文章目录Python面向对象编程(OOP)详解:通俗易懂的全面指南一、OOP基本概念1.什么是面向对象编程?2.OOP的四大支柱3.核心概念对比表二、类和对象1.类(Class)vs对象(Object)2.类结构详解三、OOP三大特性详解1.封装(Encapsulation)2.继承(Inherita
- 深度学习:让 AI 拥有 “思考” 能力的核心技术
田园Coder
人工智能科普人工智能科普
1.深度学习:突破传统的AI“进阶版”1.1什么是深度学习?深度学习是机器学习的一个分支,它通过模拟人脑神经网络的多层结构,让AI能够自动学习数据中的复杂特征,从而完成更高级的认知任务。例如,传统机器学习需要人类手动提取“猫有尖耳朵、胡须”等特征,而深度学习能直接从原始图片中,自主学习从像素到轮廓、再到整体形态的多层特征,最终实现更精准的识别。这种“自主提取特征”的能力,让深度学习突破了传统AI的
- 马斯克整出的半仙儿,Chat GPT会让多少白领失业?可能会带来哪些变化?
良辰美景5566
这几天,ChatGPT火了,是美国一家叫OpenAI的高科技公司研发的,背后的投资人是谁?——埃隆马斯克!这哥们儿只要一出手,注定就和新奇呀伟大呀啥的绑在一起了,他搞的项目,比如特斯拉、星链、脑机接口,光听名字就透着不俗。很多人纳闷儿,他这次搞得ChatGPT是个啥玩意儿?简单说就是一个人工智能聊天软件,这个软件比以往的智能聊天软件强在哪儿?这么说吧,这简直就是个半仙儿啊。如果您是一位老人,这个C
- PyTorch torch.no_grad() 指南(笔记)
拉拉拉拉拉拉拉马
pytorch人工智能python笔记深度学习
PyTorchtorch.no_grad()权威在PyTorch深度学习框架中,高效的显存管理对于训练复杂模型和执行大规模推理任务至关重要。显存不足(OutOfMemory,OOM)错误是开发者经常面临的挑战之一。torch.no_grad()作为PyTorch提供的一个核心工具,能够在推理(inference)和验证(validation)阶段显著优化显存使用并提升计算速度。本报告旨在全面、深入
- 【深度学习基础】PyTorch中model.eval()与with torch.no_grad()以及detach的区别与联系?
目录1.核心功能对比2.使用场景对比3.区别与联系4.典型代码示例(1)模型评估阶段(2)GAN训练中的判别器更新(3)提取中间特征5.关键区别总结6.常见问题与解决方案(1)问题:推理阶段显存爆掉(2)问题:Dropout/BatchNorm行为异常(3)问题:中间张量意外参与梯度计算7.最佳实践8.总结以下是PyTorch中model.eval()、withtorch.no_grad()和.d
- 量子计算与AI融合的技术突破与实践路径
量子计算与人工智能的融合正开启一个全新的技术纪元,这种"量智融合"不是简单的技术叠加,而是多领域、多学科的横向连接,通过协同创新实现非线性增长。本文将深入探讨这一领域的最新进展、技术实现路径以及行业应用案例。电子-光子-量子一体化芯片:硬件基础突破2025年7月,美国波士顿大学、加州大学伯克利分校和西北大学团队联合开发出全球首个电子-光子-量子一体化芯片系统。这一突破性成果发表在《自然·电子学》杂
- 117、Python机器学习:数据预处理与特征工程技巧
多多的编程笔记
python机器学习开发语言
Python开发之机器学习准备:数据预处理与特征工程机器学习是当前人工智能领域的热门方向之一。而作为机器学习的核心组成部分,数据预处理与特征工程对于模型的性能有着至关重要的影响。本文将带领大家了解数据预处理与特征工程的基本概念,以及它们在实际应用场景中的重要性。数据预处理数据预处理是机器学习中的第一步,它的主要目的是将原始数据转换成适合进行机器学习模型训练的形式。就像我们在做饭之前需要清洗和准备食
- 2025年各细分产业链企业数据(汽车、数字经济、食品、制造业)
经管数据库
汽车智能手机数据分析
本数据包含2025年及之前的所有上中下游企业信息,67个细分产业。汽车专区、数字经济专区、数字创意专区、未来产业专区、高端装备专区、新能源专区、食品农业专区、传统制造业专区等71个文件。汽车专区:充电桩制造动力电池汽车材料制造汽车制造汽车制造设备汽车座椅制造驱动电机制造燃料电池汽车制造燃料电池系统制造新能源汽车制造智能驾驶智能视觉数字经济专区:5g边缘计算大数据类服务器光通信集成电路区块链人工智能
- 2024年,想要靠做软件测试获得高薪,还有机会吗?
朱公子的Note
软件测试
2024年,科技行业风云变幻,随着自动化技术和人工智能的发展,软件测试领域的竞争愈发激烈。很多人会问,现在还投身软件测试,真的能拿到高薪吗?尤其是当越来越多的自动化工具涌现,手动测试员会不会被淘汰?时间过得真快,一眨眼,2024年已经过去了一大半。最近正值金九银十招聘季,后台不免又出现了这几个同学们关心的问题:2024年还能转行软件测试吗?零基础转行可行吗?那么,2024年,软件测试行业的高薪岗位
- 2023-09-15 五角大楼探索生成式人工智能解决方案
泰格
佳文砺道智库2023-09-1409:58发表于北京据“防务头条”网9月12日报道,美国研究机构“特殊竞争力研究项目”(SCSP)的一份报称告,如果美国想在制定生成式人工智能的开发和使用规范方面引领全球,就必须增加联邦研发支出,建立新的政府机构,或者改变现有的政府机构。生成式人工智能可以加速新药和网络安全解决方案的发现,从根本上实现更好的计算机网络,并提高公众的理解。但在对手手中,它可能会导致更多
- DataLoader
在PyTorch中,DataLoader是torch.utils.data模块中的一个重要类,用于将数据集包装成可迭代对象,在训练和测试模型时提供了高效、便捷的数据加载和批处理功能。主要作用:批量处理数据:将数据集中的样本整理成一个个批次(batch),方便模型进行一次处理多个样本,加速训练过程。例如,设置batch_size=32,就会每次从数据集中取出32个样本组成一个批次。数据打乱:在训练过
- 探索OpenCV 3.2源码:计算机视觉的架构与实现
轩辕姐姐
本文还有配套的精品资源,点击获取简介:OpenCV是一个全面的计算机视觉库,提供广泛的功能如图像处理、对象检测和深度学习支持。OpenCV3.2版本包含了改进的深度学习和GPU加速特性,以及丰富的示例程序。本压缩包文件提供了完整的OpenCV3.2源代码,对于深入学习计算机视觉算法和库实现机制十分宝贵。源码的模块化设计、C++接口、算法实现、多平台支持和性能优化等方面的深入理解,都将有助于开发者的
- 人工智能服务器处理器的全新定义 两大头部品牌旗舰款的王者之争!云储存cpu_云服务器处理器_企业服务器处理器
一、旗舰处理器架构解析IntelXeon6900系列代表着英特尔在服务器处理器领域的最新成果,采用增强版Intel7制程工艺打造。该系列最高配置56个物理核心,通过超线程技术支持112个逻辑线程,在处理多线程任务时展现出卓越的性能表现。内存子系统方面,支持8通道DDR5-4800内存配置,最高可扩展至4TB容量,为内存密集型应用提供了充足带宽。特别值得一提的是其集成的AMX高级矩阵扩展指令集,这项
- 院级医疗AI管理流程—基于数据共享、算法开发与工具链治理的系统化框架
Allen_Lyb
医疗高效编程研发人工智能算法时序数据库经验分享健康医疗
医疗AI:从“单打独斗”到“协同共进”在科技飞速发展的今天,医疗人工智能(AI)正以前所未有的速度改变着传统医疗模式。从最初在影像诊断、临床决策支持、药物发现等单一领域的“单点突破”,医疗AI如今已迈向“系统级协同”的新阶段。曾经,医疗AI的应用多集中在某一特定环节,比如利用深度学习算法分析医学影像,辅助医生进行疾病诊断。这种单点突破式的应用虽然在一定程度上提高了医疗效率,但随着医疗行业对AI技术
- python--自动化的机器学习(AutoML)
Q_ytsup5681
python自动化机器学习
自动化机器学习(AutoML)是一种将自动化技术应用于机器学习模型开发流程的方法,旨在简化或去除需要专业知识的复杂步骤,让非专家用户也能轻松创建和部署机器学习模型**[^3^]。具体介绍如下:1.自动化的概念:自动化是指使设备在无人或少量人参与的情况下完成一系列任务的过程。这一概念随着电子计算机的发明和发展而不断进化,从最初的物理机械到后来的数字程序控制,再到现在的人工智能和机器学习,自动化已经渗
- 人人皆有神功:AI如何改变程序员的江湖地位?
nbsaas-boot
人工智能大数据
在人类的历史中,每一次技术革命都重新洗牌了社会的力量结构:工业革命带来机器力量的爆发,信息时代成就了程序员的黄金时代。而如今,随着通用人工智能(AGI)和大模型技术的突飞猛进,我们正在步入一个**“人人皆有神功”的AI江湖时代**。当AI成为每个人的智能助手,编程是否还重要?程序员将何去何从?本文将以“武林江湖”的隐喻,探索AI时代的技术平权与社会重构。一、技术平权真的来了吗?过去,程序员之所以被
- 大型语言模型的智能本质是什么
ZhangJiQun&MXP
教学2021论文2024大模型以及算力语言模型人工智能自然语言处理
大型语言模型的智能本质是什么基于海量数据的统计模式识别与生成系统,数据驱动的语言模拟系统,其价值在于高效处理文本任务(如写作、翻译、代码生成),而非真正的理解与创造大型语言模型(如GPT-4、Claude等)的智能本质可概括为基于海量数据的统计模式识别与生成系统,其核心能力源于对语言规律的深度学习,但缺乏真正的理解与意识。以下从本质特征、技术机制、典型案例及争议点展开分析:一、智能本质的核心特征统
- 深度学习超参数优化(HPO)终极指南:从入门到前沿
摘要:在深度学习的实践中,模型性能的好坏不仅取决于算法和数据,更在一半程度上取决于超参数的精妙设置。本文是一篇关于超参数优化(HyperparameterOptimization,HPO)的综合性指南,旨在带领读者从最基础的概念出发,系统性地梳理从经典到前沿的各类优化方法,并最终落地于实用策略和现代工具。无论您是初学者还是资深从业者,都能从中获得宝贵的见解。第一部分:夯实基础——HPO的核心概念1
- 工业大模型应用报告:新机遇、挑战与未来展望
花生糖@
AIGC学习资料库大模型人工智能应用扩展屏应用开发AI机器学习
大模型在工业智能化发展中的新机遇、挑战与展望。以下是报告的核心内容概述:大模型为工业智能化发展带来新机遇大模型开启人工智能应用新时代,推动技术创新和应用。大模型有望成为驱动工业智能化的引擎,提高研发效率、拓展生产制造智能化应用边界、提升经营管理水平。大模型应用落地需要深度适配工业场景,解决行业知识和企业特定环境的理解问题。大模型和小模型在工业领域将长期并存小模型应用呈现倒U型分布,主要集中在生产制
- AI时代的弯道超车之第十七章:黄仁勋:坚持一件事,哪怕坐足冷板凳
Hebron_Deb
AI时代-弯道超车-逆袭人生人工智能
在这个AI重塑世界的时代,你还在原地观望吗?是时候弯道超车,抢占先机了!李尚龙倾力打造——《AI时代的弯道超车:用人工智能逆袭人生》专栏,带你系统掌握AI知识,从入门到实战,全方位提升认知与竞争力!内容亮点:AI基础+核心技术讲解职场赋能+创业路径揭秘打破信息差+预测行业未来第十七章:黄仁勋:坚持一件事,哪怕坐足冷板凳我们终于来到了第十七章,也是这本人物传记中该领域的最后一章。前面我们讲到了李飞飞
- AI+Python赋能!长时序植被遥感动态分析全攻略:从物候提取到生态评估
梦想的初衷~
土壤植被遥感人工智能遥感植被土壤
在遥感技术与人工智能深度融合的2025年,AI大模型正重塑长时序植被遥感数据分析范式。从Landsat/Sentinel卫星数据的智能化去云处理,到MODIS植被产品的AI辅助质量控制,以ChatGPT、DeepSeeK为代表的大模型技术已成为提升遥感数据处理效率与精度的核心工具——尤其在长时序植被动态监测、物候期精准提取、时空变异归因分析及生态环境质量评估等领域,展现出传统方法难以企及的技术优势
- 认知革命
牧羊少年的时间之旅
看完人类简史后产生了一个想法,人类经过几万年的演化从采集时代,农业社会,再到工业革命和最近的科技革命,每一次的演变升级都是对传统认知的一次革新。但是我们现在的科技发展是如此的迅速,但是认知的进步却非常缓慢。克隆人,基因设计,人工智能,生化科技,量子计算等很多领域都是传统文化所无法理解和接受的,但是这些却依然有条不紊在进行中。所以人类目前急需一次认知的革命才能追上科技的脚步,不然一定会造成认知和现实
- PyTorch数据准备:从基础Dataset到高效DataLoader
慕婉0307
pytorchpytorch人工智能python
一、PyTorch数据加载核心组件在PyTorch中,数据准备主要涉及两个核心类:Dataset和DataLoader。它们共同构成了PyTorch灵活高效的数据管道系统。Dataset类:作为数据集的抽象基类,需要实现三个关键方法:len():返回数据集大小getitem():获取单个数据样本(可选)init():初始化逻辑常见实现方式:继承torch.utils.data.Dataset使用T
- 天文图像处理:星系分类与天体定位
xcLeigh
计算机视觉CV图像处理分类人工智能AI计算机视觉
天文图像处理:星系分类与天体定位一、前言二、天文图像处理基础2.1天文图像的获取2.2天文图像的格式2.3天文图像处理的基本流程三、天文图像预处理3.1去噪处理3.2平场校正3.3偏置校正四、星系分类4.1星系的分类体系4.2基于特征提取的星系分类方法4.3基于深度学习的星系分类方法五、天体定位5.1天体坐标系统5.2基于星图匹配的天体定位方法5.3基于深度学习的天体定位方法六、总结与展望致读者一
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比