- MMDetection3D v1.4.0安装教程
Ly.Leo
激光雷达神经网络点云3d激光雷达目标检测
安装MMDetection3Dv1.4.01.系统环境2.安装2.1基本环境安装2.2调整具体版本2.3验证2.3安装MinkowskiEngine和TorchSparse3.最终环境配置5.附加库根据v1.4.0版本官方手册测试后的安装配置,亲测可行。1.系统环境项目版本日期Ubuntu18.04.06LTS-显卡RTX2070-显卡驱动525.105.17-2.安装MMDetection3D的
- MIT-BEVFusion系列五--Nuscenes数据集详细介绍,有下载好的图片
端木的AI探索屋
bevfusion自动驾驶算法python人工智能目标检测
一、数据集部分mmdetection官方对Nuscenes的中文解释地址:https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/nuscenes.htmlhttps://www.nuscenes.org/nuscenes#data-format1.1数据集概述 nuScenes数据集(pronou
- qt.qpa.plugin: Could not load the Qt platform plugin “xcb“ in
zisuina_2
pytorch深度学习qtpython
在运行mmdetection的时候发现qt5里面缺了啥qt.qpa.plugin:CouldnotloadtheQtplatformplugin“xcb”in“…”卸载了好多Qt5重新安装,都没有用尝试1:sudogedit~/.bashrc最后一行加上exportQT_DEBUG_PLUGINS=1对于我来说,没有效果尝试2:卸载qt5,重新安装,没啥用解决方案在虚拟环境中重新装opencv,对
- 【深度学习】:滴滴出行-交通场景目标检测
X.AI666
深度学习目标跟踪人工智能计算机视觉
清华大学驭风计划课程链接学堂在线-精品在线课程学习平台(xuetangx.com)代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,接实验技术指导1对1有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~案例5:滴滴出行-交通场景目标检测相关知识点:目标检测、开源框架的配置和使用(mmdetection,mmcv)1任务和数据简介
- 安装使用MMDeploy(Python版)
*Major*
人工智能python
安装使用MMDeploy(Python版)一安装MMDeploypythonmmdeploy-main/tools/deploy.pymmdeploy-main/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.pymmdetection/configs/faster_rcnn/faster-rcnn_r50_
- mmdetection模型转onnx和tensorrt实战
dream_home8407
python深度学习人工智能
一,说明1.本次实战使用的是mmdetection算法框架中的Cascase-Rcnn训练的模型;2.模型转换时,运行环境中各种工具的版本要保持一致;3.TensorRT我一直装不上,我用的是镜像环境.参考链接:link二,使用Docker镜像1.0,镜像基础环境构建exportTAG=openmmlab/mmdeploy:ubuntu20.04-cuda11.8-mmdeploydockerpu
- mmdetection使用自己的voc数据集训练模型实战
dream_home8407
人工智能深度学习python
一.自己数据集整理将labelimg格式数据集进行整理1.1.更换图片后缀为jpgimportosimportshutilroot_path='/media/ai-developer/img'file=os.listdir(root_path)forimginfile:ifimg.endswith('jpeg')orimg.endswith('JPG')orimg.endswith('png'):
- AI 实战训练营(Class 1)OpenMMLab 概述
Zhangdd1208
MMLab实战训练营人工智能深度学习计算机视觉
AI实战训练营(Class1)OpenMMLab概述OpenMMLab概述OpenMMLab各开源算法库详细介绍明星算法库:MMDetectionMMYOLOMMOCRMMDetection3DMMRotateMMSegmentationMMpretrainMMposeMMHuman3DMMAction2MMagicMMDeployPlaygroundOpenMMLab开源生态OpenMMLab概
- mmocr 安装及快速运行
TYUT_xiaoming
mmocrocr
MMOCR是一个基于PyTorch和MMDetection的开源工具箱,支持众多OCR相关的模型,涵盖了文本检测、文本识别以及关键信息提取等多个主要方向。它还支持了大多数流行的学术数据集,并提供了许多实用工具帮助用户对数据集和模型进行多方面的探索和调试,助力优质模型的产出和落地。它具有以下特点:全流程,多模型:支持了全流程的OCR任务,包括文本检测、文本识别及关键信息提取的各种最新模型。模块化设计
- mmdetection使用projects/gradio_demo
盛世芳华
目标检测
我用google的colab搭建。#Checknvccversion!nvcc-V#CheckGCCversion!gcc--version#installdependencies:(usecu111becausecolabhasCUDA11.1)%pipinstall-Uopenmim!miminstall"mmengine>=0.7.0"!miminstall"mmcv>=2.0.0rc4"#
- MMDetection
pythonSuperman
MMdDetectionMMDetection
什么是MMDetectionMMDetection实际上是一个用于目标检测的工具包,面向深度学习时代的。任务支持目标检测实例分割覆盖广泛440+个预训练模型60+篇论文复现常用学术数据集算法丰富两阶段检测器一阶段检测器级联检测器无锚框检测器Transformer使用方便训练工具测试工具推理APIMMDetection环境搭建MMCV是所有这个OpenMMLab系列包括MMDetection,MMC
- mmpycocotools包安装的问题:源码安装出现:“gcc: error : ../common/maksApi.c: 没有那个文件或目录“
做一个徘徊在牛a与牛c之间
python
mmdetection框架中的mmpycocotools包的安装问题解决问题背景解决方案:方案1:不安装mmpycocotools包方案2:安装mmpycocotools包问题总结问题背景在配一篇detection论文时,安装README文档进行配置,由于论文代码采用的mmdetection(2.X.X)版本中使用了mmpycocotools这个模块(也就是pycocotools外面再套了一层),
- MMDetection: Open MMLab Detection Toolbox and Benchmark
Cat丹
MMDetection是一个基于PyTorch的开源物体检测工具包。包括物体检测、实例分割,以及相关的模块。不仅包括训练推断代码,还提供200多个网络的模型。table.pngpapergithub
- cd /content/drive/MyDrive
fayetdd
深度学习pytorch
cd/content/drive/MyDrive/GD-MAEpythonsetup.pydevelop--usercdpcdet/ops/dcnrm-rfbuild/pythonsetup.pydevelop--userpythontrain.py--cfg_file./cfgs/kitti_models/pointpillar.yamlWaymoDataset—MMDetection3D1.3
- 深入浅出:mmdetection和mmyolo在ubuntu和windows系统下的安装指南
梦想的理由
windowsubuntuubuntuwindowslinux
文章目录一、前言二、安装mmdetection前期准备工作安装验证三、安装mmyolo前期准备工作安装验证四、总结一、前言在当前的人工智能和计算机视觉领域,目标检测技术已成为一项核心技术,广泛应用于自动驾驶、视频监控、医学图像分析等多个领域。mmdetection和mmyolo是这一领域的两个重要工具,基于深度学习算法,提供了强大且灵活的目标检测功能。本博客旨在为对深度学习和目标检测感兴趣的读者提
- Grounding 模型 + SAM 报错
gs80140
各种问题GroundingSAMMMDetection
引入Grounding目标检测模型串联SAM从而实现实例分割任务,目前支持GroundingDINO和GLIP参考教程MMDetection-SAM如果是GroundingDINO则安装如下依赖即可cdplaygroundpipinstallgit+https://github.com/facebookresearch/segment-anything.gitpipinstallgit+https
- mmdet.structures.DetDataSample 数据结构解析
gs80140
AI深度学习机器学习人工智能
官方文档https://mmdetection.readthedocs.io/zh-cn/latest/api.html#mmdet-structures``gt_instances``(InstanceData):Groundtruthofinstanceannotations.标注的数据``pred_instances``(InstanceData):Instancesofdetectionp
- 【AI框架】MMDetection3D 使用指南
白拾Official
技术星光学习pythonpytorch目标检测
MMDetection3D是一个基于PyTorch的目标检测开源工具箱,下一代面向3D检测的平台对安装MMDetection3D有问题的同学可以看:【星光02】MMDetection3D目标检测框架的Docker环境制作和改良✨本文结合官方文档,梳理了基于mmdet3d开发人工智能模型的基本流程,整理相关的代码和小工具。如遇任何问题,可以查阅官方文档,MMDetection3D的官方文档还是写得很
- mmdet tools 使用指南
小张Tt
目标检测python图像处理人工智能
MMDetection是一个基于PyTorch的目标检测开源工具箱。它是OpenMMLab项目的一部分。主分支代码目前支持PyTorch1.8及其以上的版本。使用前提(1)mmdet使用手册地址https://mmdetection.readthedocs.io/zh-cn/latest/user_guides/index.html#id2(2)第一次运行前请先运行pipinstallseabor
- Windows下面安装MMDetection图文教程
我真的爱发明
https://github.com/open-mmlab/mmdetection/blob/master/docs/get_started.md注意事项在安装MMDetection之前需要先将环境中的MMCV卸载掉注意:如果你安装了mmcv,你需要先运行pipuninstallmmcv将其卸载掉。如果mmcv和mmcv-full都安装了,就会有ModuleNotFoundError.MMCV的版
- 目标检测正负样本分配策略----ATSS
cv-daily
目标检测人工智能计算机视觉
一、ATSS参考:https://blog.csdn.net/xuzz_498100208/article/details/110355048https://zhuanlan.zhihu.com/p/411659547作者提出了一种自适应的选取正样本的方法,具体方法如下:1.对于每个输出的检测层,选计算每个anchor的中心点和目标的中心点的L2距离,选取K(mmdetection的topK是9)
- 实现目标检测中的数据格式自由(labelme json、voc、coco、yolo格式的相互转换)
万里鹏程转瞬至
pythonC++与C#实践目标检测jsonYOLOcoco
在进行目标检测任务中,存在labelmejson、voc、coco、yolo等格式。labelmejson是由anylabeling、labelme等软件生成的标注格式、voc是通用目标检测框(mmdetection、paddledetection)所支持的格式,coco是通用目标检测框(mmdetection、paddledetection)所支持的格式,yolo格式是yolo系列项目中所支持的
- 二十分钟入门计算机视觉开源神器——课堂笔记
敲键盘的喵桑
OpenMMLab实战营笔记深度学习人工智能
1,统一的深度学习框架,2.02,现状3,代表算法库(1)目标检测MMDetection任务支持:目标家呢,实力分割,全景分割覆盖广泛算法丰富使用方便(2)MMYOLO(3)MMOCR文本检测,文本识别,关键信息提取(4)MMDetection3D(5)MMRotate(6)MMSegmentation(7)MMPretrain图像分类+预训练+多模态算法库(8)MMPose姿态估计(关键点检测)
- 基于MMDet3D的pointpillars和centernet推理(mmdet3d v1.0 rc)
一只糊涂虫儿
3dpytorch深度学习
文章目录mmdetection3D学习文档安装环境方法一方法二(我没用)验证通过点云样例程序来验证数据预处理KITTI数据集预处理NuScenes数据集预处理使用已有模型在标准数据集上进行推理和训练在标准数据集上训练预定义模型在KITTI数据集上训练pointpillars准备数据集训练在NuScenes数据集上训练pointpillars准备数据集训练centerpoint实现mmdetecti
- MMDETECTION3D 使用kitti格式的数据集跑centerpoint模型
爱吃油淋鸡的莫何
雷达点云数据人工智能大数据python
MMDETECTION3D使用kitti格式的数据集跑centerpoint模型1修改配置文件configs/centerpoint/centerpoint_pillar02_kitti_3d.py如下#"""configs/centerpoint/centerpoint_pillar02_kitti_3d.py"""_base_=['../_base_/datasets/centerpoint_
- 【SOLO】环境配置(mmdetection=1.0.0+mmcv = 0.2.15)
摇曳的树
ubuntuubuntu
引言基于mmdetection框架搭建SOLO环境,配置十分麻烦,必须严格指定对应的版本。上图显示的两个是最关键的版本!!!但是现在mmdetection已经更新到2.14.0,mmcv已经更新到1.3.8。笔者亲测最新的版本是无法运行SOLO的。因此,环境搭建总结如下:环境配置SOLO(mmdet1.0版):https://github.com/WXinlong/SOLO1.创建虚拟环境cond
- 【MMdetection】MMdetection从入门到进阶1
资料加载中
深度学习
前言所有模型均在上coco_2017_train进行训练,并在上进行测试coco_2017_val。我们使用分布式训练。ImageNet上所有pytorch风格的预训练主干都来自PyTorch模型zoo,caffe风格的预训练主干是从detectron2新发布的模型转换而来的。为了与其他代码库进行公平比较,我们将GPU内存报告为所有8个GPU的最大值torch.cuda.max_memory_al
- 【MMdetection】MMdetection从入门到进阶
资料加载中
深度学习
基础环境安装步骤0.从官方网站下载并安装Miniconda。步骤1.创建并激活一个conda环境。condacreate--nameopenmmlabpython=3.8-ycondaactivateopenmmlab步骤2.基于PyTorch官方说明安装PyTorch。pipinstalltorch==2.0.1torchvision==0.15.2torchaudio==2.0.2--inde
- 2019-12-29 mmdetection 入坑指南
Joyner2018
1.环境python3.72.安装指导,缺少对nccl的安装指导https://github.com/open-mmlab/mmdetection/blob/master/docs/INSTALL.md3.第一次安装运行,是这个样子,失败exportCUDA_HOME=/usr/local/cudaexportPATH=/usr/local/cuda-9.0/bin:$PATHexportLD_L
- VarifocalNet: An IoU-aware Dense Object Detector(CVPR 2021)原理与代码解析
00000cj
ObjectDetection深度学习人工智能目标检测varifocalloss计算机视觉
paper:VarifocalNet:AnIoU-awareDenseObjectDetectorofficialimplementation:https://github.com/hyz-xmaster/VarifocalNetthird-partyimplementation:mmdetection/vfnet_head.pyatmain·open-mmlab/mmdetection·GitH
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt