Self -Attention、Cross-Attention?

Self -Attention

Self -Attention、Cross-Attention?_第1张图片
上图是论文中 Transformer 的内部结构图,左侧为 Encoder block,右侧为 Decoder block。红色圈中的部分为 Multi-Head Attention,是由多个 Self-Attention组成的,可以看到 Encoder block 包含一个 Multi-Head Attention,而 Decoder block 包含两个 Multi-Head Attention (其中有一个用到 Masked)。Multi-Head Attention 上方还包括一个 Add & Norm 层,Add 表示残差连接 (Residual Connection) 用于防止网络退化,Norm 表示 Layer Normalization,用于对每一层的激活值进行归一化。
Self -Attention是一端的注意力机制,输入相同。
在self-attention中,每个单词有3个不同的向量,它们分别是Query向量( Q Q Q ),Key向量( K K K )和Value向量( V V V ),长度均是64。它们是通过3个不同的权值矩阵由嵌入向量 X X X 乘以三个不同的权值矩阵 W Q W^Q WQ W K W^K WK W V W^V WV 得到,其中三个矩阵的尺寸也是相同的。均是 512 × 64 512\times64 512×64 。那么Query,Key,Value是什么意思呢?它们在Attention的计算中扮演着什么角色呢?我们先看一下Attention的计算方法,整个过程可以分成7步:

  1. 将输入单词转化成嵌入向量;
  2. 根据嵌入向量得到 q q q k k k v v v 三个向量;
  3. 为每个向量计算一个score: s c o r e = q ⋅ k score=q \cdot k score=qk
  4. 为了梯度的稳定,Transformer使用了score归一化,即除以 d k \sqrt {d_k} dk
  5. 对score施以softmax激活函数;
  6. softmax点乘Value值 v v v ,得到加权的每个输入向量的评分 v v v
  7. 相加之后得到最终的输出结果 z z z z = Σ v z=\Sigma v z=Σv

Query,Key,Value的概念取自于信息检索系统。self-attention中的 Q , K , V Q,K,V QKV也是起着类似的作用,在矩阵计算中,点积是计算两个矩阵相似度的方法之一,因此使用了 Q K T QK^T QKT进行相似度的计算。接着便是根据相似度进行输出的匹配,这里使用了加权匹配的方式,而权值就是query与key的相似度。

Self-Attention 结构

Self -Attention、Cross-Attention?_第2张图片
上图是 Self-Attention 的结构,在计算的时候需要用到矩阵Q(查询),K(键值),V(值)。在实际中,Self-Attention 接收的是输入(单词的表示向量x组成的矩阵X) 或者上一个 Encoder block 的输出。而Q,K,V正是通过 Self-Attention 的输入进行线性变换得到的。

Q, K, V 的计算

Self-Attention 的输入用矩阵X进行表示,则可以使用线性变阵矩阵WQ,WK,WV计算得到Q,K,V。计算如下图所示,注意 X, Q, K, V 的每一行都表示一个单词。

Self -Attention、Cross-Attention?_第3张图片

Self-Attention 的输出

得到矩阵 Q, K, V之后就可以计算出 Self-Attention 的输出了,计算的公式如下:
A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V Attention(Q,K,V)=softmax(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V
d k d_k dk Q , K Q,K Q,K矩阵的列数,即向量的维度。
公式中计算矩阵Q和K每一行向量的内积,为了防止内积过大,因此除以 d k d_k dk 的平方根。Q乘以K的转置后,得到的矩阵行列数都为 n,n 为句子单词数,这个矩阵可以表示单词之间的 attention 强度。下图为Q乘以 K T K^T KT ,1234 表示的是句子中的单词。
Self -Attention、Cross-Attention?_第4张图片
得到 Q K T QK^T QKT 之后,使用 Softmax 计算每一个单词对于其他单词的 attention 系数,公式中的 Softmax 是对矩阵的每一行进行 Softmax,即每一行的和都变为 1.
Self -Attention、Cross-Attention?_第5张图片
得到 Softmax 矩阵之后可以和V相乘,得到最终的输出Z。

Self -Attention、Cross-Attention?_第6张图片
上图中 Softmax 矩阵的第 1 行表示单词 1 与其他所有单词的 attention 系数,最终单词 1 的输出 Z i Z_i Zi 等于所有单词 i 的值 V i V_i Vi根据 attention 系数的比例加在一起得到,如下图所示:
Self -Attention、Cross-Attention?_第7张图片

Multi-Head Attention

Multi-Head Attention相当于 h h h个不同的self-attention的集成(ensemble)。在上一步,我们已经知道怎么通过 Self-Attention 计算得到输出矩阵 Z,而 Multi-Head Attention 是由多个 Self-Attention 组合形成的,下图是论文中 Multi-Head Attention 的结构图。
Self -Attention、Cross-Attention?_第8张图片
从上图可以看到 Multi-Head Attention 包含多个 Self-Attention 层,首先将输入X分别传递到 h 个不同的 Self-Attention 中,计算得到 h 个输出矩阵Z。下图是 h=8 时候的情况,此时会得到 8 个输出矩阵Z。
Self -Attention、Cross-Attention?_第9张图片
得到 8 个输出矩阵 Z 1 Z_1 Z1 Z 8 Z_8 Z8 之后,Multi-Head Attention 将它们拼接在一起 (Concat),然后传入一个Linear层,得到 Multi-Head Attention 最终的输出Z。
Self -Attention、Cross-Attention?_第10张图片
可以看到 Multi-Head Attention 输出的矩阵Z与其输入的矩阵X的维度是一样的。

Encoder 结构

Self -Attention、Cross-Attention?_第11张图片
上图红色部分是 Transformer 的 Encoder block 结构,可以看到是由 Multi-Head Attention, Add & Norm, Feed Forward, Add & Norm 组成的。刚刚已经了解了 Multi-Head Attention 的计算过程,现在了解一下 Add & Norm 和 Feed Forward 部分。

Add & Norm

Add & Norm 层由 Add 和 Norm 两部分组成,其计算公式如下:
Self -Attention、Cross-Attention?_第12张图片
其中 X表示 Multi-Head Attention 或者 Feed Forward 的输入,MultiHeadAttention(X) 和 FeedForward(X) 表示输出 (输出与输入 X 维度是一样的,所以可以相加)。
Add指 X+MultiHeadAttention(X),是一种残差连接,通常用于解决多层网络训练的问题,可以让网络只关注当前差异的部分,在 ResNet 中经常用到:
Self -Attention、Cross-Attention?_第13张图片
Norm指 Layer Normalization,通常用于 RNN 结构,Layer Normalization 会将每一层神经元的输入都转成均值方差都一样的,这样可以加快收敛

Feed Forward

Feed Forward 层比较简单,是一个两层的全连接层,第一层的激活函数为 Relu,第二层不使用激活函数,对应的公式如下:
max ⁡ ( 0 , X W 1 + b 1 ) W 2 + b 2 \max(0,XW_1+b_1)W_2+b_2 max(0,XW1+b1)W2+b2
X是输入,Feed Forward 最终得到的输出矩阵的维度与X一致。

组成 Encoder

通过上面描述的 Multi-Head Attention, Feed Forward, Add & Norm 就可以构造出一个 Encoder block,Encoder block 接收输入矩阵 X ( n × d ) X_{(n\times d)} X(n×d) ,并输出一个矩阵 O n × d O_{n\times d} On×d 。通过多个 Encoder block 叠加就可以组成 Encoder。

第一个 Encoder block 的输入为句子单词的表示向量矩阵,后续 Encoder block 的输入是前一个 Encoder block 的输出,最后一个 Encoder block 输出的矩阵就是编码信息矩阵 C,这一矩阵后续会用到 Decoder 中。
Self -Attention、Cross-Attention?_第14张图片

Decoder 结构

Self -Attention、Cross-Attention?_第15张图片
上图红色部分为 Transformer 的 Decoder block 结构,与 Encoder block 相似,但是存在一些区别:

  • 包含两个 Multi-Head Attention 层。
  • 第一个 Multi-Head Attention 层采用了 Masked 操作。
  • 第二个 Multi-Head Attention 层的K, V矩阵使用 Encoder 的编码信息矩阵C进行计算,而Q使用上一个 Decoder block 的输出计算。
  • 最后有一个 Softmax 层计算下一个翻译单词的概率。

第一个 Multi-Head Attention

Decoder block 的第一个 Multi-Head Attention 采用了 Masked 操作,因为在翻译的过程中是顺序翻译的,即翻译完第 i 个单词,才可以翻译第 i+1 个单词。通过 Masked 操作可以防止第 i 个单词知道 i+1 个单词之后的信息。下面以 “我有一只猫” 翻译成 “I have a cat” 为例,了解一下 Masked 操作。
下面的描述中使用了类似 Teacher Forcing 的概念,在 Decoder 的时候,是需要根据之前的翻译,求解当前最有可能的翻译,如下图所示。首先根据输入 “” 预测出第一个单词为 “I”,然后根据输入 “ I” 预测下一个单词 “have”。
Self -Attention、Cross-Attention?_第16张图片
Decoder 可以在训练的过程中使用 Teacher Forcing 并且并行化训练,即将正确的单词序列 ( I have a cat) 和对应输出 (I have a cat ) 传递到 Decoder。那么在预测第 i 个输出时,就要将第 i+1 之后的单词掩盖住,注意 Mask 操作是在 Self-Attention 的 Softmax 之前使用的,下面用 0 1 2 3 4 5 分别表示 “ I have a cat ”。
第一步:是 Decoder 的输入矩阵和 Mask 矩阵,输入矩阵包含 “ I have a cat” (0, 1, 2, 3, 4) 五个单词的表示向量,Mask 是一个 5×5 的矩阵。在 Mask 可以发现单词 0 只能使用单词 0 的信息,而单词 1 可以使用单词 0, 1 的信息,即只能使用之前的信息。
Self -Attention、Cross-Attention?_第17张图片
第二步:接下来的操作和之前的 Self-Attention 一样,通过输入矩阵X计算得到Q,K,V矩阵。然后计算Q和 K T K^T KT的乘积 Q K T QK^T QKT
Self -Attention、Cross-Attention?_第18张图片
第三步:在得到 Q K T QK^T QKT 之后需要进行 Softmax,计算 attention score,我们在 Softmax 之前需要使用Mask矩阵遮挡住每一个单词之后的信息,遮挡操作如下:
Self -Attention、Cross-Attention?_第19张图片
得到 Mask Q K T QK^T QKT 之后在 Mask Q K T QK^T QKT 上进行 Softmax,每一行的和都为 1。但是单词 0 在单词 1, 2, 3, 4 上的 attention score 都为 0。
第四步:使用 Mask Q K T QK^T QKT与矩阵 V相乘,得到输出 Z,则单词 1 的输出向量 Z 1 Z_1 Z1 是只包含单词 1 信息的。
Self -Attention、Cross-Attention?_第20张图片
第五步:通过上述步骤就可以得到一个 Mask Self-Attention 的输出矩阵 Z i Z_i Zi ,然后和 Encoder 类似,通过 Multi-Head Attention 拼接多个输出 Z i Z_i Zi然后计算得到第一个 Multi-Head Attention 的输出Z,Z与输入X维度一样。

第二个 Multi-Head Attention

Decoder block 第二个 Multi-Head Attention 变化不大, 主要的区别在于其中 Self-Attention 的 K, V矩阵不是使用 上一个 Decoder block 的输出计算的,而是使用 Encoder 的编码信息矩阵 C 计算的。

根据 Encoder 的输出 C计算得到 K, V,根据上一个 Decoder block 的输出 Z 计算 Q (如果是第一个 Decoder block 则使用输入矩阵 X 进行计算),后续的计算方法与之前描述的一致。

这样做的好处是在 Decoder 的时候,每一位单词都可以利用到 Encoder 所有单词的信息 (这些信息无需 Mask)。

Softmax 预测输出单词

Decoder block 最后的部分是利用 Softmax 预测下一个单词,在之前的网络层我们可以得到一个最终的输出 Z,因为 Mask 的存在,使得单词 0 的输出 Z0 只包含单词 0 的信息,如下:
Self -Attention、Cross-Attention?_第21张图片
Softmax 根据输出矩阵的每一行预测下一个单词:
Self -Attention、Cross-Attention?_第22张图片
这就是 Decoder block 的定义,与 Encoder 一样,Decoder 是由多个 Decoder block 组合而成。

Transformer 总结

Transformer 与 RNN 不同,可以比较好地并行训练。
Transformer 本身是不能利用单词的顺序信息的,因此需要在输入中添加位置 Embedding,否则 Transformer 就是一个词袋模型了。
Transformer 的重点是 Self-Attention 结构,其中用到的 Q, K, V矩阵通过输出进行线性变换得到。
Transformer 中 Multi-Head Attention 中有多个 Self-Attention,可以捕获单词之间多种维度上的相关系数 attention score。

Cross-Attention

Cross-Attention是两端的注意力机制,然后合起来,输入不同。Cross-attention将两个相同维度的嵌入序列不对称地组合在一起,而其中一个序列用作查询Q输入,而另一个序列用作键K和值V输入
一文彻底搞懂attention机制

你可能感兴趣的:(深度学习,人工智能,cross-attention,Self,-Attention)