- 模型微调:让AI更懂你的魔法棒
带上一无所知的我
pytorch人工智能python
模型微调:让AI更懂你的魔法棒✨在人工智能的世界里,模型微调(Fine-tuning)就像是一位魔法师用魔法棒对预训练模型进行“个性化改造”,让它更适应特定的任务。今天,我们就来深入探讨模型微调的技术细节,让你也能像魔法师一样,轻松驾驭AI模型!什么是模型微调?模型微调是指在预训练模型的基础上,通过少量的特定任务数据进行训练,使模型更好地适应新任务的技术。预训练模型通常是基于大规模数据集(如Ima
- 从 DeepSeek 到 AI 工具箱:Websoft9 应用托管平台赋能高校教学与科研
人工智能deepseek
从DeepSeek到AI工具箱:Websoft9应用托管平台赋能高校教学与科研人工智能技术的快速发展正在重塑高校的教学与科研生态。从智能教学辅助到跨学科研究,AI工具的应用场景不断扩展,而技术落地的复杂性也带来新的挑战。在这一背景下,如何将大模型能力与多样化AI工具无缝整合,构建安全、易用的科研教学环境,成为高校数字化转型的关键命题。一、高校智能化转型的三大痛点技术门槛高•AI工具部署依赖专业运维
- 聊聊关于Python与人工智能那些事
小G-biu-
python人工智能tensorflow
Python与人工智能:介绍Python在人工智能方面的应用Python是一种广泛使用的编程语言,也是人工智能领域中最受欢迎的语言之一。Python提供了许多用于构建和训练人工智能模型的库和框架。本文将介绍一些常见的人工智能技术以及Python在这些技术中的应用。OpenAIOpenAI是一个非营利组织,旨在推动人工智能的发展并促进其对人类的利益。OpenAI通过开发人工智能技术、研究人工智能的影
- 当现代教育技术遇上仓颉---探秘华为仓颉编程语言与未来教育技术的接轨
想成为高手499
华为服务器php
引言随着人工智能、物联网、区块链等新兴技术的发展,编程语言的需求也在不断演化。据市场研究机构发布的数据显示,全球编程语言市场规模预计在未来五年内将以每年10%的速度增长。此外,越来越多的企业和高校正在积极推动基于分布式系统和硬件优化的新型语言开发,这进一步表明对高性能编程语言的需求日益旺盛。近年来,华为推出了自研编程语言“仓颉”,以其高效的语法设计、灵活的语义表达能力和强大的跨平台适配性能引发了编
- Python在人工智能与机器人开发中的应用与实践
一键难忘
python人工智能机器人
Python在人工智能与机器人开发中的应用与实践Python已经成为人工智能和机器人开发的主要编程语言之一,凭借其简洁的语法、强大的库支持和广泛的社区资源,Python为开发者提供了一个高效且易于学习的平台。在这篇文章中,我们将深入探讨如何使用Python进行人工智能(AI)和机器人开发,并通过实际代码示例展示核心技术和应用。1.Python在人工智能中的应用人工智能(AI)领域的核心任务包括机器
- 计算机专业毕业设计题目推荐(新颖选题)本科计算机科学专业相关毕业设计选题大全✅
会写代码的羊
毕设选题课程设计计算机网络毕设选题毕设系统毕设题目计算机科学专业
文章目录前言最新毕设选题(建议收藏起来)本科计算机科学专业相关的毕业设计选题毕设作品推荐前言2025全新毕业设计项目博主介绍:✌全网粉丝10W+,CSDN全栈领域优质创作者,博客之星、掘金/华为云/阿里云等平台优质作者。技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、大数据、机器学习等设计与开发。主要内容:免费功能设计
- 图像分割技术的应用
不要不开心了
计算机视觉dashpython
今天的内容为:图像分割技术与应用,以下是内容总结1.图像分割概述图像分割是指预测目标的轮廓,将不同的像素划分到不同的类别,属于非常细粒度的分类任务。其应用场景广泛,包括人像抠图、医学组织提取、遥感图像分析、自动驾驶、材料图像分析等。2.图像分割的前景与背景-物体(Things):可数的前景目标,如行人、车辆等。-事物(Stuff):不可数的背景,如天空、草地、路面等。3.图像分割的三层境界-语义分
- 智慧交通是什么,可以帮助我们解决什么问题?
Guheyunyi
运维大数据人工智能信息可视化前端
智慧交通是什么?智慧交通(SmartTransportation)是指利用物联网(IoT)、大数据、人工智能(AI)、云计算、5G通信等先进技术,对交通系统进行智能化管理和优化,以提高交通效率、减少拥堵、降低事故率、提升出行体验,并实现交通资源的合理配置和可持续发展。智慧交通的核心是通过数据采集、分析和应用,实现交通系统的智能化、自动化和协同化,从而构建一个高效、安全、绿色、便捷的交通生态系统。智
- 在线视频创作平台(Vidnami)
deepdata_cn
视频生成视频剪辑视频创作
Vidnami是一款功能强大的在线视频创作平台,前身为ContentSamurai,于2015年推出,2020年更名为Vidnami。它运用人工智能技术,能够分析输入的文本,自动从大量素材中选取合适的图像和视频片段,将文字快速转化为具有专业外观的视频,无需用户具备视频编辑经验。该平台提供多种视频模板、全主题定制功能以及内置的免版权媒体库,包括3000万张图片和3万首音乐,还支持自动配音,用户可以录
- OpenCV第1课OpenCV 介绍及其树莓派下环境的搭建
嵌入式老牛
树莓派之OpenCVopencv人工智能计算机视觉
1.机器是如何“看”的我们人类可以通过眼睛看到五颜六色的世界,是因为人眼的视觉细胞中存在分别对红、绿、蓝敏感的3种细胞。其中的光感色素根据光线的不同进行不同比例的分解,从而让我们识别到各种颜色。对人工智能而言,学会“看”也是非常关键的一步。那么机器人是如何看到这个世界的呢?这就涉及到人工智能方向重要的分支--机器视觉。机器视觉即用机器人代替人眼来做测量和判断,通过机器视觉产品(即图像摄取装置,分C
- Linux安装Anaconda和Jupyter
硬水果糖
人工智能Linuxlinuxjupyter运维
一、了解Anaconda和Jupyter引言:Anaconda是一个流行的开源数据科学平台,广泛用于数据分析、机器学习、人工智能等领域。它是一个集成了大量科学计算和数据科学工具的Python和R编程语言环境。Anaconda的主要目标是简化数据科学和机器学习的开发流程,提供一个易于安装和管理的环境。而预装了大量常用的Python和R库,这些库涵盖了数据科学的各个方面,包括:数据分析:Pandas、
- ChatGPT、DeepSeek、GIS与Python机器学习强强联合!地质灾害风险评估、易发性分析、信息化建库及灾后重建
WangYan2022
DeepSeekChatGPT地下水地质灾害DeepSeekChatGPTGIS灾后重建
在地质灾害频繁肆虐的当下,精准开展风险评价刻不容缓。如今,一门极具创新性的教程震撼登场,它将ChatGPT、DeepSeek等前沿技术与GIS、Python以及机器学习深度交融,为学员打造出前所未有的学习体验,助力大家在地质灾害风险评价领域强势突围,一路领先。前沿技术融合,铸就智能学习核心动力教程最闪耀的亮点之一,便是大胆引入了ChatGPT和DeepSeek技术。它们恰似无所不能的“数据魔法师”
- Hessian 矩阵是什么
ZhangJiQun&MXP
教学2021AIpython2024大模型以及算力矩阵线性代数算法人工智能机器学习
Hessian矩阵是什么目录Hessian矩阵是什么Hessian矩阵的性质及举例说明**1.对称性****2.正定性决定极值类型****特征值为2(正),因此原点(0,0)(0,0)(0,0)是极小值点。****3.牛顿法中的应用****4.特征值与曲率方向****5.机器学习中的实际意义**一、定义与公式二、实例分析Hessian矩阵是多元函数二阶偏导数构成的方阵,用于分析函数局部曲率、判断极
- LoRA中黑塞矩阵、Fisher信息矩阵是什么
ZhangJiQun&MXP
教学2021论文2024大模型以及算力矩阵机器学习人工智能transformer深度学习算法线性代数
LoRA中黑塞矩阵、Fisher信息矩阵是什么1.三者的核心概念黑塞矩阵(Hessian)二阶导数矩阵,用于优化问题中判断函数的凸性(如牛顿法),或计算参数更新方向(如拟牛顿法)。Fisher信息矩阵(FisherInformationMatrix,FIM)统计学中衡量参数估计的不确定性,反映数据中包含的关于参数的信息量。在机器学习中常用于自然梯度下降(NaturalGradientDescent
- 神经网络基础之正则化
硬水果糖
人工智能神经网络人工智能机器学习
引言:正则化(Regularization)是机器学习中一种用于防止模型过拟合技术。核心思想是通过在模型损失函数中添加一个惩罚项(PenaltyTerm),对模型的复杂度进行约束,从而提升模型在新数据上的泛化能力。一、正则化目的防止过拟合:当模型过于复杂(例如神经网络层数过多、参数过多)时,容易在训练数据上“记忆”噪声或细节,导致在测试数据上表现差。简化模型:正则化通过限制模型参数的大小或数量,迫
- DeepSeek 大模型落地成都高新区:科技赋能警务的创新变革
AGI大模型学习
科技人工智能DeepSeek大模型chatgpt大模型应用AI大模型
在科技飞速发展的当下,人工智能正以前所未有的速度融入各个领域,深刻改变着人们的生活与工作方式。公安领域也不例外,积极拥抱科技创新,成为提升警务效能、维护社会稳定的关键路径。全国第一例警用DeepSeek大模型落地成都高新区,这一突破性举措在警务智能化发展进程中具有里程碑意义,为公安工作带来了全方位的革新。一、警用DeepSeek大模型落地的时代背景近年来,国产AI蓬勃发展,不断涌现出令人瞩目的成果
- 大数据和人工智能概念全面解析
就犯得上方法
一、大数据和人工智能大数据是伴随着信息数据爆炸式增长和网络计算技术迅速发展而兴起的一个新型概念。根据麦肯锡全球研究所的定义,大数据是一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。大数据能够帮助各行各业的企业从原本毫无价值的海量数据中挖掘出用户的需求,使数据能够从量变到质变,真正产生价值
- DeepSeek爆火,背后模型竟藏着这些秘密!
qq_23519469
ai
DeepSeek是什么来头最近,AI圈可是被一个名字刷爆了屏,那就是DeepSeek!它就像一颗横空出世的超级新星,在全球范围掀起了一阵狂热的追捧潮,这热度,简直了!大家都在疯狂讨论它,各种测评、对比层出不穷。它到底有啥过人之处,能让这么多人都为之疯狂?今天咱就来好好唠唠。DeepSeek,全称杭州深度求索人工智能基础技术研究有限公司,是一家专注于开发先进大语言模型(LLM)和相关技术的企业。它成
- 决策树算法全解析:从零基础到Titanic实战,一文搞定机器学习经典模型
吴师兄大模型
0基础实现机器学习入门到精通算法机器学习决策树人工智能深度学习编程开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- AI人工智能代理工作流AI Agent WorkFlow:设计智能任务处理流程
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:设计智能任务处理流程作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在当今的数字化时代,随着数据量的爆炸式增长和复杂性的提升,传统的手动任务处理方式已经无法满足高效、准确的需求。人工智能技术的发展为自动化任务处理提供了新的可能性。AI人工智能代理(AIAgent)作为一
- 图像处理篇---图像预处理
Ronin-Lotus
图像处理篇深度学习篇程序代码篇图像处理人工智能opencvpython深度学习计算机视觉
文章目录前言一、通用目的1.1数据标准化目的实现1.2噪声抑制目的实现高斯滤波中值滤波双边滤波1.3尺寸统一化目的实现1.4数据增强目的实现1.5特征增强目的实现:边缘检测直方图均衡化锐化二、分领域预处理2.1传统机器学习(如SVM、随机森林)2.1.1特点2.1.2预处理重点灰度化二值化形态学操作特征工程2.2深度学习(如CNN、Transformer)2.2.1特点2.2.2预处理重点通道顺序
- 【大模型科普】AIGC技术发展与应用实践(一文读懂AIGC)
人工智能
【专栏介绍】⌈⌈⌈人工智能与大模型应用⌋⌋⌋人工智能(AI)通过算法模拟人类智能,利用机器学习、深度学习等技术驱动医疗、金融等领域的智能化。大模型是千亿参数的深度神经网络(如ChatGPT),经海量数据训练后能完成文本生成、图像创作等复杂任务,显著提升效率,但面临算力消耗、数据偏见等挑战。当前正加速与教育、科研融合,未来需平衡技术创新与伦理风险,推动可持续发展。文章目录一、AIGC概述(一)什么是
- EmbodiedSAM:在线实时3D实例分割,利用视觉基础模型实现高效场景理解
数据猎手小k
3D实例分割在线实时感知视觉基础模型(VFM)应用
2025-02-12,由清华大学和南洋理工大学的研究团队开发一种名为EmbodiedSAM(ESAM)的在线3D实例分割框架。该框架利用2D视觉基础模型辅助实时3D场景理解,解决了高质量3D数据稀缺的难题,为机器人导航、操作等任务提供了高效、准确的视觉感知能力。一、研究背景随着机器人技术和人工智能的发展,机器人在复杂环境中执行任务(如导航、操作和交互)的能力越来越依赖于对三维(3D)场景的实时、准
- 国产信创AI IDE:开启智能编程新时代
InsCode AI IDE
国产信创AIIDE:开启智能编程新时代随着信息技术的迅猛发展,软件开发工具也在不断演进。近年来,人工智能(AI)技术的应用为编程工具带来了革命性的变化。其中,国产信创AIIDE——InsCodeAIIDE,作为一款由CSDN、GitCode和华为云CodeArtsIDE联合开发的新一代集成开发环境(IDE),以其智能化、高效化的特点,正在引领智能编程的新时代。最新接入DeepSeek-V3模型,点
- 【产品小白】什么是AI产品经理
百事不可口y
产品经理的一步一步人工智能产品经理学习产品运营内容运营用户运营
一、AI产品经理的定义与角色定位AI产品经理是人工智能技术与商业应用之间的核心桥梁,负责将复杂的AI技术转化为满足市场需求的产品。需同时具备技术理解力、商业洞察力和用户思维,既要参与算法选型与数据建模,又要定义产品功能与市场策略,是贯穿产品全生命周期的关键角色。与传统互联网产品经理相比,AI产品经理的独特之处在于:技术深度参与:需理解机器学习、自然语言处理(NLP)、计算机视觉等技术原理,并参与数
- 人工智能(AI)系统化学习路线
xiaoyu❅
python人工智能学习
一、为什么需要系统化学习AI?人工智能技术正在重塑各行各业,但许多初学者容易陷入误区:❌盲目跟风:直接学习TensorFlow/PyTorch,忽视数学与算法基础。❌纸上谈兵:只看理论不写代码,无法解决实际问题。❌方向模糊:对CV/NLP/RL等细分领域缺乏认知,难以针对性提升。正确的学习姿势:“金字塔式”分层学习(理论→算法→框架→应用→工程化),逐步构建完整的AI知识体系。二、人工智能学习路线
- 数据增强:扩充数据集提升模型泛化能力
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1.数据增强的重要性在机器学习领域,模型的泛化能力至关重要。一个泛化能力强的模型能够在未见数据上表现良好,而过拟合的模型则会在训练数据上表现出色,但在新数据上表现糟糕。数据增强是一种有效提升模型泛化能力的技术,它通过对现有数据进行各种变换,人为地扩充数据集,从而增加训练数据的数量和多样性。1.2.数据增强的应用场景数据增强广泛应用于各种机器学习任务中,包括:图像识别:对图像进行旋转
- 数据增强:扩充数据集,提升模型的鲁棒性
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
数据增强:扩充数据集,提升模型的鲁棒性1.背景介绍1.1数据集的重要性在机器学习和深度学习领域中,数据集是训练模型的基础。高质量的数据集对于构建准确、鲁棒的模型至关重要。然而,在现实世界中,获取大量高质量的数据通常是一个巨大的挑战。数据采集过程耗时耗力,而且成本高昂。此外,某些领域的数据存在隐私和安全问题,难以获取。1.2数据集不足的挑战当数据集规模有限时,模型很容易过拟合,无法很好地推广到新的、
- 使用TensorFlow、OpenCV和Pygame实现图像处理与游戏开发
UwoiGit
tensorflowopencvpygame
在本篇文章中,我们将介绍如何结合使用TensorFlow、OpenCV和Pygame来进行图像处理和游戏开发。这三个工具在机器学习、计算机视觉和游戏开发领域都非常流行,并且它们的结合可以提供强大的功能和无限的创造力。我们将逐步介绍如何安装和配置这些工具,并提供相关的源代码示例。安装TensorFlowTensorFlow是一个基于数据流图的开源机器学习框架,提供了丰富的工具和库来构建和训练各种深度
- 机器学习之KMeans算法
知舟不叙
机器学习算法kmeans
文章目录引言1.KMeans算法简介2.KMeans算法的数学原理3.KMeans算法的步骤3.1初始化簇中心3.2分配数据点3.3更新簇中心3.4停止条件4.KMeans算法的优缺点4.1优点4.2缺点5.KMeans算法的应用场景5.1图像分割5.2市场细分5.3文档聚类5.4异常检测6.Python实现KMeans算法7.总结引言KMeans算法是机器学习中最经典的无监督学习算法之一,广泛应
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少