深入学习卷积神经网络中卷积层和池化层的意义(知识点汇总)

本文是转载,是因为在自己的学习过程中,阅读好的资料解决了一直存在的疑难问题,所以想要分享出来,供大家参考。(后续会继续更新)

原文链接:https://www.cnblogs.com/wj-1314/p/9593364.html

(只复制出来部分内容,详情见网站)

为什么要使用卷积呢?

  在传统的神经网络中,比如多层感知机(MLP),其输入通常是一个特征向量,需要人工设计特征,然后将这些特征计算的值组成特征向量,在过去几十年的经验来看,人工找到的特征并不是怎么好用,有时多了,有时少了,有时选择的特征根本就不起作用(真正起作用的特征在浩瀚的未知里面)。这就是为什么在过去卷积神经网络一直被SVM等完虐的原因。

  如果有人说,任何特征都是从图像中提取的,那如果把整副图像作为特征来训练神经网络不就行了,那肯定不会有任何信息丢失!那先不说一幅图像有多少冗余信息,单说着信息量就超级多。。。

  假如有一幅1000*1000的图像,如果把整幅图像作为向量,则向量的长度为1000000(10^6)。在假如隐含层神经元的个数和输入一样,也是1000000;那么,输入层到隐含层的参数数据量有10^12,妈呀,什么样的机器能训练这样的网络呢。所以,我们还得降低维数,同时得以整幅图像为输入(人类实在找不到好的特征了)。于是,牛逼的卷积来了。接下来看看卷积都干了些啥。

你可能感兴趣的:(机器学习,学习笔记,卷积神经网络,深度学习,神经网络)