- 深度学习系列----->环境搭建(Ubuntu)
二师兄用飘柔
深度学习历程深度学习ubuntu人工智能pytorchpython
1、前言电脑基础系统硬件情况:系统:ubuntu18.04、显卡:GTX1050Ti;后续的环境搭建都在此基础上进行。此次学习选择Pytorch作为深度学习的框架,选择的原因主要由于PyTorch在研究领域特别受欢迎,较多的论文框架也是基于其开发。2、anaconda+python3安装测试在学习深度学习的过程中会涉及到使用不同版本python包的问题,而anaconda可以便捷获取包且对包能够进
- pip是如何卸载你安装的第三方库的
酷python
pythonpython
使用pipuninstall命令可以卸载掉你所安装的第三方库,所有与其相关的文件都将被pip整理出来展示并询问是否真的要删除,类似下面的提示pipuninstallnoxFoundexistinginstallation:nox2020.8.22Uninstallingnox-2020.8.22:Wouldremove:d:\python\lib\site-packages\nox-2020.8.
- 【删库跑路】一次删除pip的所有第三方库
F_D_Z
杂pythonpip
进入命令行,先list看下库存piplist导出所有的第三方库至一文件列表pipfreeze>requirements.txt按照列表卸载所有库pipuninstall-rrequirements.txt-y再list看下,可见库存已清空
- 深度学习-常用环境配置
瑶山
AIlinux人工智能windowsCUDAPyTorch
目录Miniconda安装安装NVIDIA显卡驱动安装CUDA和cnDNNCUDAcuDNNPyTorch安装手动下载测试Miniconda安装最新版Miniconda搭建Python环境_miniconda创建python虚拟环境-CSDN博客安装NVIDIA显卡驱动直接进NVIDIA官网:NVIDIAGeForce驱动程序-N卡驱动|NVIDIA在这里有GeForce驱动程序,立即下载,这是下
- 机器学习初学者理论初解
Mikhail_G
机器学习人工智能
大家好!为什么手机相册能自动识别人脸?为什么购物网站总能推荐你喜欢的商品?这些“智能”背后,都藏着一位隐形高手——机器学习(MachineLearning)。一、什么是机器学习?简单说,机器学习是教计算机从数据中自己找规律的技术。就像教孩子认猫:不是直接告诉他“猫有尖耳朵和胡须”,而是给他看100张猫狗照片,让他自己总结出猫的特征。传统程序vs机器学习传统程序:输入规则+数据→输出结果(例:按“温
- Embedding与向量数据库
玖月初玖
大模型应用开发基础人工智能embedding数据库
1.Embedding是什么EmbeddingModel是一种机器学习模型,它的核心任务是将离散的、高维的符号(如单词、句子、图片、用户、商品等)转换成连续的、低维的向量(称为“嵌入”或“向量表示”),并且这个向量能有效地捕捉原始符号的语义、关系或特征。1.1通俗理解EmbeddingModel是让计算机“理解”世界的核心工具,把“文字、图片、音频”等信息变成一串有意义的数字我们称之为“向量”。类
- 推荐开源项目:Milvus Lite —— 轻量级向量数据库,助力AI应用快速起飞
穆希静
推荐开源项目:MilvusLite——轻量级向量数据库,助力AI应用快速起飞项目介绍MilvusLite是知名开源向量数据库Milvus的轻量级版本,专为需要在小型环境中进行向量嵌入和相似性搜索的AI应用设计。通过将MilvusLite导入您的Python应用,您可以直接使用Milvus的核心向量搜索功能。MilvusLite已集成在PythonSDKofMilvus中,只需通过pipinstal
- set up RAGFlow on your Mac
一周一志程序员
前沿技术与趋势AIGC
个人思考:这些仅仅是工具,和人的思维实际还是有很大差距。可能是我认知片面,你需要投喂大量的内容给它,它自己其实并不会思考,只是从它的认知里告诉它他知道的东西。举个不太巧当的例子,和以往的方式恰恰相反,以往都是先有内容再吸引流量,而现在是现有架子再往里填充内容。架子好找,内容难求。TosetupRAGFlowonyourMac,followthesegeneralsteps:Prerequisite
- #ifdef和#if 的应用差异
woainizhongguo.
C/C++单片机
在嵌入式软件开发中,#ifdef和#if都是预处理指令,用于条件编译,但它们的应用场景和逻辑有显著差异:一、ifdefifndef用法1.#ifdef/#ifndef作用:检查某个宏是否被定义(无论其值如何)。语法:#ifdefMACRO_NAME//如果MACRO_NAME被定义,编译此部分代码#endif#ifndefMACRO_NAME//如果MACRO_NAME未被定义,编译此部分代码#e
- Spring Boot+Redis+Caffeine 二级缓存架构的终极实现方案、包含万级QPS下的黄金配置参数、全文超过2500字(博君一赞)
夜雨hiyeyu.com
javaspringbootredis架构后端javaspringcloudspring
SpringBoot+Redis+Caffeine二级缓存架构的终极实现方案、包含万级QPS下的黄金配置参数、全文超过2500字(博君一赞)一、架构设计原理(10万QPS基石)设计优势:二、Caffeine本地缓存原子级配置1.高性能缓存构造器2.容量智能计算算法3.动态TTL策略三、Redis集群极致优化(支撑百万OPS)1.Lettuce连接池配置2.Redis服务端关键配置3.Pipelin
- 2023年第10期(NeuroImage):DomainATM:多中心医学图像数据标准化工具箱
影浮科技ImageFlow
基本信息1.标题:DomainATM:Domainadaptationtoolboxformedicaldataanalysis.2.期刊:NeuroImage3.IF/JCR/分区:7.4/Q1/中科院一区4.DOI:10.1016/j.neuroimage.2023.119863目录1、导读2、背景动机3、研究目的4、工具箱介绍5、测试试验6、局限不足1导读域适应(DA)是基于机器学习的现代医
- Python 报错:ModuleNotFoundError: No module named ‘Crypto‘
Crypto报错解决方案Python报错:ModuleNotFoundError:Nomodulenamed'Crypto'前言问题解决方案Python报错:ModuleNotFoundError:Nomodulenamed‘Crypto’前言Crypto是一个加密模块,它包含了多种加密算法,如AES、DES、RSA等。它不是Python标准库的一部分,需要使用pip安装。pycrypto和Cry
- LangChain 源码剖析(二):LangChain 流程编排的核心骨架——Chain 基类源码剖析
ATM006
人工智能langchain大模型Agent
每一篇文章都短小精悍,不啰嗦。在LangChain框架中,Chain是连接各种组件(模型、工具、数据库等)的核心骨架,负责将多个步骤按逻辑串联成可执行的工作流。无论是简单的「提问-回答」流程,还是复杂的「检索-思考-工具调用」pipeline,都依赖Chain基类提供的基础能力。本文将从架构设计、核心功能到实现细节,全面解析这一基类的设计智慧。一、架构定位:为什么需要Chain基类?Chain基类
- 在NLP深层语义分析中,深度学习和机器学习的区别与联系
在自然语言处理(NLP)的深层语义分析任务中,深度学习与机器学习的区别和联系主要体现在以下方面:一、核心区别特征提取方式机器学习:依赖人工设计特征(如词频、句法规则、TF-IDF等),需要领域专家对文本进行结构化处理。例如,传统情感分析需人工定义“情感词库”或通过词性标注提取关键成分。深度学习:通过神经网络自动学习多层次特征。例如,BERT等模型可从原始文本中捕获词向量、句法关系甚至篇章级语义,无
- Microsoft Powerpoint for Mac 2021 中文破解版 (幻灯片演示文稿制作)
1f40c7e94f60
软件介绍/功能MicrosoftPowerPoint2021forMac破解版是办公必备的软件之一,作为知名的幻灯片演示文稿制作软件,这次的PowerPoint2021破解版改进和新增不少功能,比如@提及功能、墨迹绘制、3D模型插入等,功能更加完善,制作PPT怎么能少的了这款PowerPoint2021破解版,欢迎各位下载PowerPoint2021mac版体验全新功能!软件地址:macdwn.s
- Three.js入门:创建第一个3D场景
薯条说影
Three.js3D场景创建跨平台设置安全异常处理HTML骨架搭建
背景简介Three.js是一个轻量级的3D图形库,它让Web开发者能够在浏览器中创建和显示3D图形。本章介绍如何设置环境以开始使用Three.js,包括不同操作系统下的安装步骤、安全异常处理以及基本的HTML骨架创建。安装与设置操作系统兼容性:Three.js的使用不仅限于Windows系统。对于其他操作系统,如Linux和MacOS,需要将可执行文件复制到目标目录,并通过命令行启动。无论是哪种操
- 迁移学习:知识复用的智能迁移引擎 | 从理论到实践的跨域赋能范式
大千AI助手
人工智能Python#OTHER迁移学习人工智能机器学习算法神经网络大模型迁移
让AI像人类一样“举一反三”的通用学习框架本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心定义与基本概念迁移学习(TransferLearning)是一种机器学习范式,其核心思想是:将源领域(SourceDomain)学到的知识迁移到目标领域(TargetDomain),以提升目标任务的性能
- 2018 MacBook Pro 安装cuda+cuDNN+pytorch
2018MacBookPro安装cuda+cuDNN+pytorch根据CSDN上的两篇文章和知乎上的一篇文章,前前后后折腾了好几天,在一个小姐姐的帮助下终于装上了。我的环境系统版本:macOS10.13.6(17G10021)GPUDriverVersion:387.10.10.10.40.133CUDADriverVersion:410.130CUDA:cuda_10.0.130cuDNN:c
- mac的m芯片上跑cuda程序
xinxuann
macos
config里parser.add_argument('--device',type=str,default='mps')main里device=torch.device(cfg['device'])train里x_batch=x_batch.astype('float32')y_batch=y_batch.astype('float32')aux_batch=aux_batch.astype('
- CUDA在不受支持的macOS系统上使用(BigSur)
ilovefifa2020
macosgithub经验分享大数据功能测试pythonc++
CUDA与WebDriver在macOS系统上不是同一个东西,CUDA是一个图形库,用于使用GPU在某些软件中进行计算或渲染,只安装CUDA不能使Maxwell和Pascal核心显卡工作,必须同时安装WebDriver,其他核心(如Fermi、kepler)等可以在不安装WebDriver的情况下让CUDA工作。果粉众所周知,CUDA与WebDriver只能在支持的macOS系统HighSierr
- AI原生应用中的用户画像构建:从理论到实践全解析
AI原生应用中的用户画像构建:从理论到实践全解析关键词:用户画像、AI原生应用、特征工程、机器学习、个性化推荐、数据隐私、模型优化摘要:本文全面解析AI原生应用中用户画像构建的全过程,从基础概念到核心技术,再到实际应用和未来趋势。我们将用通俗易懂的方式讲解用户画像如何像"数字身份证"一样工作,深入探讨特征提取、模型构建等关键技术,并通过实际案例展示用户画像在推荐系统、精准营销等场景中的应用。文章还
- C/C++之内存对齐
码莎拉蒂 .
C&C++内存对齐为什么要内存对齐用#pragmapackn对内存不对齐pragma
1、什么是内存对齐计算机系统对基本类型数据在内存中放的位置做了限制,它们会要求这些数的首地址是一个数(一般为4和8)的整数倍,我们看下结构体的大小#includestructA{chara;intb;};intmain(){printf("sizeofstructAis%d\n",sizeof(structA));return0;}结果:1111deMacBook-Pro:diguia1111$.
- Mac中 “XX”文件已损坏,无法打开 解决方案
恰在灯火阑珊处
Q&Amacos
前言Mac中打开软件出现“XX”文件已损坏,无法打开的提示怎么处理?操作总结1、查看当前Gatekeeper是否启用spctl--status2、完全关闭Gatekeeper(允许安装任何来源应用)sudospctl--master-disable3、打开“系统设置->“隐私与安全性”最下方选择“允许所有来源”至此,可以重新打开软件,基本已成功。4、恢复系统安全设置【成功之后收尾】sudospct
- rpg_trajectory_evaluation工具评估SLAM/VIO系统
rpg_trajectory_evaluation工具评估SLAM/VIO系统1、安装系统环境:ubuntu18.04+ROSmelodic代码:https://github.com/uzh-rpg/rpg_trajectory_evaluationtutorial:http://rpg.ifi.uzh.ch/docs/IROS18_Zhang.pdf1.1首先安装依赖的python库pipins
- 做人脸识别遇到的问题
princesshu
pythonpycharm
最开始安装的时候直接用pipinstalldlib却一直显示错误提示“Failedbuildingwheelfordlib”之后去网上搜来了各种下载链接依然错误我发现问题是!!python版本问题,我下载所有的包都与我的python版本不匹配于是我先安装了cmakeboost之后最后直接在终端安好了dlib~
- 【技术工具】python人员照片简介批量对照(千人级)
Allen_Lyb
医疗高效编程研发python开发语言自然语言处理健康医疗语言模型
要实现根据照片上的工号批量添加人员姓名和工号到照片上,可以按照以下步骤操作(使用Python+PIL/Pillow+OpenCV+pytesseract):解决方案步骤准备数据创建人员信息表(CSV格式):姓名,工号确保所有照片文件名包含工号(如工号.jpg),或照片中有清晰可见的工号文本安装依赖库pipinstallpillowopencv-pythonpandaspytesseract#额外安
- 6、LangChain —— 使用 Huggingface 中的开源模型
Miyazaki_Hayao
LangChain实战langchain
文章目录一、概述二、大语言模型发展史三、预训练+微调的模式四、用HuggingFace跑开源模型五、申请使用Meta的Llama2模型六、通过HuggingFace调用Llama七、LangChain和HuggingFace的接口1、通过HuggingFaceHub2、通过HuggingFacePipeline八、用LangChain调用自定义语言模型一、概述 大语言模型,不止ChatGPT一种。
- Hugging Face x LangChain: 全新 LangChain 合作伙伴包
langchain-huggingface与LangChain无缝集成,为在LangChain生态系统中使用HuggingFace模型提供了一种可用且高效的方法。这种伙伴关系不仅仅涉及到技术贡献,还展示了双方对维护和不断改进这一集成的共同承诺。起步langchain-huggingface的起步非常简单。以下是安装该软件包的方法:pipinstalllangchain-huggingface现在,
- Python爬虫【四十五章】爬虫攻防战:异步并发+AI反爬识别的技术解密
程序员_CLUB
Python入门到进阶python爬虫人工智能
目录引言:当爬虫工程师遇上AI反爬官一、异步并发基础设施层1.1混合调度框架设计1.2智能连接池管理二、机器学习反爬识别层2.1特征工程体系2.2轻量级在线推理三、智能决策系统3.1动态策略引擎3.2实时对抗案例四、性能优化实战4.1全链路压测数据4.2典型故障处理案例五、总结:构建智能化的爬虫生态系统Python爬虫相关文章(推荐)引言:当爬虫工程师遇上AI反爬官在大数据采集领域,我们正经历着技
- MacOS上安装Homebrew的详细教程
MacOS上安装Homebrew的详细教程一、引言Homebrew(通常简称为brew)是一款专门为MacOS操作系统设计的开源包管理器,它提供了一种简单、高效的方式来安装、管理和升级命令行工具、编程语言环境以及各种应用程序。其核心概念和作用如下:简化安装流程:在MacOS中,用户无需手动下载软件源码并配置编译环境,只需通过Homebrew提供的命令即可一键安装软件。Homebrew会自动处理软件
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源