深入浅出PyTorc——进阶训练技巧

1. 自定义损失函数

1.1 以函数方式定义

        手动写出损失的公式并用函数进行存储,方便调用。

def my_loss(output, target):
    loss = torch.mean((output - target)**2)
    return loss

1.2 以类方式定义

 1.2.1 损失函数的继承关系

        (1)Loss函数部分继承_loss,部分继承_WeightedLoss

        (2)_weightedLoss继承自_loss

        (3)_loss继承自nn.Module

1.2.2 实例

        (1)损失函数:Dice Loss

        (2)公式:DSC=\frac{2\left | X\cap Y \right |}{\left | X \right | + \left | Y \right |}

        (3)实现代码:

class DiceLoss(nn.Module):
    def __init__(self,weight=None,size_average=True):
        super(DiceLoss,self).__init__()
        
    def forward(self,inputs,targets,smooth=1):
        inputs = F.sigmoid(inputs)       
        inputs = inputs.view(-1)
        targets = targets.view(-1)
        intersection = (inputs * targets).sum()                   
        dice = (2.*intersection + smooth)/(inputs.sum() + targets.sum() + smooth)  
        return 1 - dice

# 使用方法    
criterion = DiceLoss()
loss = criterion(input,targets)

        (4)常见的损失函数DiceBCELoss、IoULoss、FocalLoss

class DiceBCELoss(nn.Module):
    def __init__(self, weight=None, size_average=True):
        super(DiceBCELoss, self).__init__()

    def forward(self, inputs, targets, smooth=1):
        inputs = F.sigmoid(inputs)       
        inputs = inputs.view(-1)
        targets = targets.view(-1)
        intersection = (inputs * targets).sum()                     
        dice_loss = 1 - (2.*intersection + smooth)/(inputs.sum() + targets.sum() + smooth)  
        BCE = F.binary_cross_entropy(inputs, targets, reduction='mean')
        Dice_BCE = BCE + dice_loss
        
        return Dice_BCE
--------------------------------------------------------------------
    
class IoULoss(nn.Module):
    def __init__(self, weight=None, size_average=True):
        super(IoULoss, self).__init__()

    def forward(self, inputs, targets, smooth=1):
        inputs = F.sigmoid(inputs)       
        inputs = inputs.view(-1)
        targets = targets.view(-1)
        intersection = (inputs * targets).sum()
        total = (inputs + targets).sum()
        union = total - intersection 
        
        IoU = (intersection + smooth)/(union + smooth)
                
        return 1 - IoU
--------------------------------------------------------------------
    
ALPHA = 0.8
GAMMA = 2

class FocalLoss(nn.Module):
    def __init__(self, weight=None, size_average=True):
        super(FocalLoss, self).__init__()

    def forward(self, inputs, targets, alpha=ALPHA, gamma=GAMMA, smooth=1):
        inputs = F.sigmoid(inputs)       
        inputs = inputs.view(-1)
        targets = targets.view(-1)
        BCE = F.binary_cross_entropy(inputs, targets, reduction='mean')
        BCE_EXP = torch.exp(-BCE)
        focal_loss = alpha * (1-BCE_EXP)**gamma * BCE
                       
        return focal_loss

注意: 最好全程使用PyTorch提供的张量计算接口,这样就不需要我们实现自动求导功能并且我们可以直接调用cuda

2. 动态调整学习率

        学习率的设置难处:

        (1)学习速率设置过小,会极大降低收敛速度,增加训练时间;

        (2)学习率太大,可能导致参数在最优解两侧来回振荡;

        (3)选定了一个合适的学习率后,经过许多轮的训练后,可能会出现准确率震荡或loss不再下降等情况,说明当前学习率已不能满足模型调优的需求。

2.1 使用官方scheduler

2.1.1 官方提供的API

  • lr_scheduler.LambdaLR

  • lr_scheduler.MultiplicativeLR

  • lr_scheduler.StepLR

  • lr_scheduler.MultiStepLR

  • lr_scheduler.ExponentialLR

  • lr_scheduler.CosineAnnealingLR

  • lr_scheduler.ReduceLROnPlateau

  • lr_scheduler.CyclicLR

  • lr_scheduler.OneCycleLR

  • lr_scheduler.CosineAnnealingWarmRestarts

2.1.2 使用方法

# 选择一种优化器
optimizer = torch.optim.Adam(...) 
# 选择上面提到的一种或多种动态调整学习率的方法
scheduler1 = torch.optim.lr_scheduler.... 
scheduler2 = torch.optim.lr_scheduler....
...
schedulern = torch.optim.lr_scheduler....
# 进行训练
for epoch in range(100):
    train(...)
    validate(...)
    optimizer.step()
    # 需要在优化器参数更新之后再动态调整学习率
	scheduler1.step() 
	...
    schedulern.step()

        注意 : 使用官方给出的torch.optim.lr_scheduler时,需要将scheduler.step()放在optimizer.step()后面进行使用。

2.2 自定义scheduler

2.2.1 自定义函数

        (1)方法:自定义函数adjust_learning_rate来改变param_grouplr的值。

        (2)实现代码:

def adjust_learning_rate(optimizer, epoch):
    lr = args.lr * (0.1 ** (epoch // 30))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

2.2.2 具体调用方法

        直接调用我们已经定义好的adjust_learning_rate函数

def adjust_learning_rate(optimizer,...):
    ...
optimizer = torch.optim.SGD(model.parameters(),lr = args.lr,momentum = 0.9)
for epoch in range(10):
    train(...)
    validate(...)
    adjust_learning_rate(optimizer,epoch)

3. 模型微调

        (1)数据量有限,最终训练得到的模型的精度也可能达不到实用的要求。

        (2)模型微调(finetune):就是我们先找到一个同类的别人训练好的模型,把别人现成的训练好了的模型拿过来,换成自己的数据,通过训练调整一下参数。

3.1 torchvision

3.1.1 模型微调的流程

深入浅出PyTorc——进阶训练技巧_第1张图片

3.1.2 使用已有模型结构 

        以torchvision中的常见模型为例

        (1)实例化网络

import torchvision.models as models
resnet18 = models.resnet18()
# resnet18 = models.resnet18(pretrained=False)  等价于与上面的表达式
alexnet = models.alexnet()
vgg16 = models.vgg16()
squeezenet = models.squeezenet1_0()
densenet = models.densenet161()
inception = models.inception_v3()
googlenet = models.googlenet()
shufflenet = models.shufflenet_v2_x1_0()
mobilenet_v2 = models.mobilenet_v2()
mobilenet_v3_large = models.mobilenet_v3_large()
mobilenet_v3_small = models.mobilenet_v3_small()
resnext50_32x4d = models.resnext50_32x4d()
wide_resnet50_2 = models.wide_resnet50_2()
mnasnet = models.mnasnet1_0()

        (2)传递pretrained参数:通过True或者False来决定是否使用预训练好的权重,默认状态下pretrained = False

import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)
googlenet = models.googlenet(pretrained=True)
shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
mobilenet_v2 = models.mobilenet_v2(pretrained=True)
mobilenet_v3_large = models.mobilenet_v3_large(pretrained=True)
mobilenet_v3_small = models.mobilenet_v3_small(pretrained=True)
resnext50_32x4d = models.resnext50_32x4d(pretrained=True)
wide_resnet50_2 = models.wide_resnet50_2(pretrained=True)
mnasnet = models.mnasnet1_0(pretrained=True)

3.1.3 训练特定层

        requires_grad = False来冻结部分层

import torchvision.models as models
# 冻结参数的梯度
feature_extract = True
model = models.resnet18(pretrained=True)
set_parameter_requires_grad(model, feature_extract)
# 修改模型
num_ftrs = model.fc.in_features
model.fc = nn.Linear(in_features=num_ftrs, out_features=4, bias=True)

3.2 timm

        提供了许多计算机视觉的SOTA模型,可以当作是torchvision的扩充版本,并且里面的模型在准确度上也较高。

3.2.1 timm的安装

        (1)通过pip安装

pip install timm

        (2)通过git与pip进行安装

git clone https://github.com/rwightman/pytorch-image-models
cd pytorch-image-models && pip install -e .

3.2.2 查看timm中预训练模型种类

        (1)查看数量

import timm
avail_pretrained_models = timm.list_models(pretrained=True)
len(avail_pretrained_models)

        (2) 查看特定模型种类timm.list_models()

all_densnet_models = timm.list_models("*densenet*")
all_densnet_models



['densenet121',
 'densenet121d',
 'densenet161',
 'densenet169',
 'densenet201',
 'densenet264',
 'densenet264d_iabn',
 'densenetblur121d',
 'tv_densenet121']

        (3)查看模型参数default_cfg

model = timm.create_model('resnet34',num_classes=10,pretrained=True)
model.default_cfg


{'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34-43635321.pth',
 'num_classes': 1000,
 'input_size': (3, 224, 224),
 'pool_size': (7, 7),
 'crop_pct': 0.875,
 'interpolation': 'bilinear',
 'mean': (0.485, 0.456, 0.406),
 'std': (0.229, 0.224, 0.225),
 'first_conv': 'conv1',
 'classifier': 'fc',
 'architecture': 'resnet34'}

3.2.3 使用和修改timm中预训练模型

        通过timm.create_model()的方法来进行模型的创建,我们可以通过传入参数pretrained=True,来使用预训练模型

import timm
import torch

# 初始化模型参数
model = timm.create_model('resnet34',pretrained=True)
x = torch.randn(1,3,224,224)
output = model(x)
output.shape


# 查看某一层模型参数(以第一层卷积为例)
model = timm.create_model('resnet34',pretrained=True)
list(dict(model.named_children())['conv1'].parameters())


# 修改模型(将1000类改为10类输出)
model = timm.create_model('resnet34',num_classes=10,pretrained=True)
x = torch.randn(1,3,224,224)
output = model(x)
output.shape


# 改变输入通道数(比如我们传入的图片是单通道的,但是模型需要的是三通道图片) 我们可以通过添加in_chans=1来改变
model = timm.create_model('resnet34',num_classes=10,pretrained=True,in_chans=1)
x = torch.randn(1,1,224,224)
output = model(x)

3.2.4 模型的保存

        timm库所创建的模型是torch.model的子类,我们可以直接使用torch库中内置的模型参数保存和加载的方法

torch.save(model.state_dict(),'./checkpoint/timm_model.pth')
model.load_state_dict(torch.load('./checkpoint/timm_model.pth'))

4. 半精度训练

4.1 半精度介绍

        (1)GPU性能:算力和显存

        (2)半精度:PyTorch默认的浮点数存储方式用的是torch.float32,即torch.float32——>torch.float16

        (3)图形表示:

深入浅出PyTorc——进阶训练技巧_第2张图片

4.2 半精度训练的设置

# 导入模型
from torch.cuda.amp import autocast

# 模型设置:在模型定义中,使用python的装饰器方法,用autocast装饰模型中的forward函数。
autocast()   
def forward(self, x):
    ...
    return x

# 训练过程:在训练过程中,只需在将数据输入模型及其之后的部分放入“with autocast():“即可
 for x in train_loader:
	x = x.cuda()
	with autocast():
        output = model(x)
        ...

注意: 半精度训练主要适用于数据本身的size比较大。当数据本身的size并不大时,使用半精度训练则可能不会带来显著的提升。

5. 数据增强-imgaug

5.1 imgaug简介和安装

5.1.1 imgaug简介

        imgaug是计算机视觉任务中常用的一个数据增强的包

5.1.2 imgaug的安装

        (1)conda

conda config --add channels conda-forge
conda install imgaug

        (2)pip

#  install imgaug either via pypi

pip install imgaug

#  install the latest version directly from github

pip install git+https://github.com/aleju/imgaug.git

5.2 imgaug的使用

5.2.1 单张图片处理

import imageio
import imgaug as ia
%matplotlib inline

# 图片的读取
img = imageio.imread("./Lenna.jpg")
# 可视化图片
ia.imshow(img)


# 一张一种数据增强处理
# imgaug包含了许多从Augmenter继承的数据增强的操作。在这里我们以Affine为例子
from imgaug import augmenters as iaa
# 设置随机数种子
ia.seed(4)
# 实例化方法
rotate = iaa.Affine(rotate=(-4,45))
img_aug = rotate(image=img)
ia.imshow(img_aug)


# # 一张多种种数据增强处理
from imgaug import augmenters as iaa
# 设置随机数种子
ia.seed(4)
# 实例化方法
rotate = iaa.Affine(rotate=(-4,45))
img_aug = rotate(image=img)
ia.imshow(img_aug)
iaa.Sequential(children=None, # Augmenter集合
               random_order=False, # 是否对每个batch使用不同顺序的Augmenter list
               name=None,
               deterministic=False,
               random_state=None)
# 构建处理序列
aug_seq = iaa.Sequential([
    iaa.Affine(rotate=(-25,25)),
    iaa.AdditiveGaussianNoise(scale=(10,60)),
    iaa.Crop(percent=(0,0.2))
])
# 对图片进行处理,image不可以省略,也不能写成images
image_aug = aug_seq(image=img)
ia.imshow(image_aug)

5.2.2 对批次图片进行处理

# 对批次的图片以同一种方式处理
images = [img,img,img,img,]
images_aug = rotate(images=images)
ia.imshow(np.hstack(images_aug))

aug_seq = iaa.Sequential([
    iaa.Affine(rotate=(-25, 25)),
    iaa.AdditiveGaussianNoise(scale=(10, 60)),
    iaa.Crop(percent=(0, 0.2))
])
# 传入时需要指明是images参数
images_aug = aug_seq.augment_images(images = images)
#images_aug = aug_seq(images = images) 
ia.imshow(np.hstack(images_aug))



# 对批次的图片分部分处理
iaa.Sometimes(p=0.5,  # 代表划分比例
              then_list=None,  # Augmenter集合。p概率的图片进行变换的Augmenters。
              else_list=None,  #1-p概率的图片会被进行变换的Augmenters。注意变换的图片应用的Augmenter只能是then_list或者else_list中的一个。
              name=None,
              deterministic=False,
              random_state=None)



# 对不同大小的图片进行处理
# 构建pipline
seq = iaa.Sequential([
    iaa.CropAndPad(percent=(-0.2, 0.2), pad_mode="edge"),  # crop and pad images
    iaa.AddToHueAndSaturation((-60, 60)),  # change their color
    iaa.ElasticTransformation(alpha=90, sigma=9),  # water-like effect
    iaa.Cutout()  # replace one squared area within the image by a constant intensity value
], random_order=True)

# 加载不同大小的图片
images_different_sizes = [
    imageio.imread("https://upload.wikimedia.org/wikipedia/commons/e/ed/BRACHYLAGUS_IDAHOENSIS.jpg"),
    imageio.imread("https://upload.wikimedia.org/wikipedia/commons/c/c9/Southern_swamp_rabbit_baby.jpg"),
    imageio.imread("https://upload.wikimedia.org/wikipedia/commons/9/9f/Lower_Keys_marsh_rabbit.jpg")
]

# 对图片进行增强
images_aug = seq(images=images_different_sizes)

# 可视化结果
print("Image 0 (input shape: %s, output shape: %s)" % (images_different_sizes[0].shape, images_aug[0].shape))
ia.imshow(np.hstack([images_different_sizes[0], images_aug[0]]))

print("Image 1 (input shape: %s, output shape: %s)" % (images_different_sizes[1].shape, images_aug[1].shape))
ia.imshow(np.hstack([images_different_sizes[1], images_aug[1]]))

print("Image 2 (input shape: %s, output shape: %s)" % (images_different_sizes[2].shape, images_aug[2].shape))
ia.imshow(np.hstack([images_different_sizes[2], images_aug[2]]))

 5.2.3 imgaug在PyTorch的应用

import numpy as np
from imgaug import augmenters as iaa
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms

# 构建pipline
tfs = transforms.Compose([
    iaa.Sequential([
        iaa.flip.Fliplr(p=0.5),
        iaa.flip.Flipud(p=0.5),
        iaa.GaussianBlur(sigma=(0.0, 0.1)),
        iaa.MultiplyBrightness(mul=(0.65, 1.35)),
    ]).augment_image,
    # 不要忘记了使用ToTensor()
    transforms.ToTensor()
])

# 自定义数据集
class CustomDataset(Dataset):
    def __init__(self, n_images, n_classes, transform=None):
		# 图片的读取,建议使用imageio
        self.images = np.random.randint(0, 255,
                                        (n_images, 224, 224, 3),
                                        dtype=np.uint8)
        self.targets = np.random.randn(n_images, n_classes)
        self.transform = transform

    def __getitem__(self, item):
        image = self.images[item]
        target = self.targets[item]

        if self.transform:
            image = self.transform(image)

        return image, target

    def __len__(self):
        return len(self.images)


def worker_init_fn(worker_id):
    imgaug.seed(np.random.get_state()[1][0] + worker_id)


custom_ds = CustomDataset(n_images=50, n_classes=10, transform=tfs)
custom_dl = DataLoader(custom_ds, batch_size=64,
                       num_workers=4, pin_memory=True, 
                       worker_init_fn=worker_init_fn)

6. 使用argparse进行调参

6.1 argparse简介

        (1)argsparse是python的命令行解析的标准模块,内置于python,我们直接进行调用即可。

        (2)argparse的作用就是将命令行传入的其他参数进行解析、保存和使用。

6.2 argparse的使用

6.2.1 设置步骤

        (1)创建ArgumentParser()对象;

        (2)调用add_argument()方法添加参数

        (3)使用parse_args()解析参数

6.2.2 实际代码实现

# demo.py
import argparse

# 创建ArgumentParser()对象
parser = argparse.ArgumentParser()

# 添加参数
parser.add_argument('-o', '--output', action='store_true', 
    help="shows output")
# action = `store_true` 会将output参数记录为True
# type 规定了参数的格式
# default 规定了默认值
parser.add_argument('--lr', type=float, default=3e-5, help='select the learning rate, default=1e-3') 

parser.add_argument('--batch_size', type=int, required=True, help='input batch size')  
# 使用parse_args()解析函数
args = parser.parse_args()

if args.output:
    print("This is some output")
    print(f"learning rate:{args.lr} ")

6.3  更加高效使用argparse修改超参数

        一般在进行一个项目创建时,我们喜欢直接创建config.py文件对参数进行存储,方便对参数进行查询、调用,修改和删除。

        config.py文件

import argparse  
  
def get_options(parser=argparse.ArgumentParser()):  
  
    parser.add_argument('--workers', type=int, default=0,  
                        help='number of data loading workers, you had better put it '  
                              '4 times of your gpu')  
  
    parser.add_argument('--batch_size', type=int, default=4, help='input batch size, default=64')  
  
    parser.add_argument('--niter', type=int, default=10, help='number of epochs to train for, default=10')  
  
    parser.add_argument('--lr', type=float, default=3e-5, help='select the learning rate, default=1e-3')  
  
    parser.add_argument('--seed', type=int, default=118, help="random seed")  
  
    parser.add_argument('--cuda', action='store_true', default=True, help='enables cuda')  
    parser.add_argument('--checkpoint_path',type=str,default='',  
                        help='Path to load a previous trained model if not empty (default empty)')  
    parser.add_argument('--output',action='store_true',default=True,help="shows output")  
  
    opt = parser.parse_args()  
  
    if opt.output:  
        print(f'num_workers: {opt.workers}')  
        print(f'batch_size: {opt.batch_size}')  
        print(f'epochs (niters) : {opt.niter}')  
        print(f'learning rate : {opt.lr}')  
        print(f'manual_seed: {opt.seed}')  
        print(f'cuda enable: {opt.cuda}')  
        print(f'checkpoint_path: {opt.checkpoint_path}')  
  
    return opt  
  
if __name__ == '__main__':  
    opt = get_options()

        train.py调用其中的参数进行参数的设置

# 导入必要库
...
import config

opt = config.get_options()

manual_seed = opt.seed
num_workers = opt.workers
batch_size = opt.batch_size
lr = opt.lr
niters = opt.niters
checkpoint_path = opt.checkpoint_path

# 随机数的设置,保证复现结果
def set_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    random.seed(seed)
    np.random.seed(seed)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True

...


if __name__ == '__main__':
	set_seed(manual_seed)
	for epoch in range(niters):
		train(model,lr,batch_size,num_workers,checkpoint_path)
		val(model,lr,batch_size,num_workers,checkpoint_path)

参考:深入浅出PyTorch——第六章:PyTorch进阶训练技巧

你可能感兴趣的:(深入浅出PyTorch,深度学习,人工智能,pytorch,架构)