- awesome python 中文版 相见恨晚!(pythonNB的第三方资源库)
weixin_30788731
AwesomePython中文版来啦!原文链接:Python资源大全内容包括:Web框架、网络爬虫、网络内容提取、模板引擎、数据库、数据可视化、图片处理、文本处理、自然语言处理、机器学习、日志、代码分析等。GitHub-jobbole/awesome-python-cn:Python资源大全中文版环境管理管理Python版本和环境的工具p–非常简单的交互式python版本管理工具。pyenv–简单
- 【机器学习】决策树 ( Decision Tree )
AI天才研究院
ChatGPTDeepSeekR1&大数据AI人工智能大模型深度学习实战机器学习决策树算法支持向量机人工智能
【机器学习】决策树(DecisionTree)文章目录【机器学习】决策树(DecisionTree)1.ID3(1)信息增益(2)ID3的算法流程(3)实现ID32.C4.53.CART(1)决策桩DecisionStump(2)回归CART:最小二乘回归树leastsquaresregressiontree⚪回归CART的例子(3)分类CART(4)处理缺失值Handlemissingfeatu
- 机器学习-随机森林解析
Mr终游
机器学习机器学习随机森林人工智能
目录一、.随机森林的思想二、随机森林构建步骤1.自助采样2.特征随机选择3构建决策树4.集成预测三.随机森林的关键优势**(1)减少过拟合****(2)高效并行化****(3)特征重要性评估****(4)耐抗噪声**四.随机森林的优缺点优点缺点五.参数调优(以scikit-learn为例)波士顿房价预测一、.随机森林的思想1.通过组成多个弱学习器(决策树)形成一个学习器2.多样性增强:每颗决策树通
- 人工智能与深度学习的应用案例解析及代码实现
accurater
人工智能深度学习科技机器人
引言人工智能(AI)与深度学习(DeepLearning)作为21世纪最具变革性的技术之一,已渗透到医疗、金融、交通、制造等各个领域。深度学习通过多层神经网络模拟人类认知过程,显著提升了复杂任务的自动化水平。本文将从技术原理、核心应用案例及代码实现三个维度,系统解析其实际应用,并探讨未来挑战与发展方向。一、深度学习技术概述1.1核心技术框架深度学习基于深度神经网络(DNN),其核心在于通过多层非线
- 深度学习笔记——基础部分
肆——
深度学习深度学习笔记人工智能pythonpytorch
深度学习是一种机器学习的方式,通过模仿人脑吃力信息的方式,使用多层神经网络来学习数据的复杂模式和特征。深度学习和机器学习的区别:在机器学习中,特征提取通常需要人工设计和选择,依赖于领域专家的知识来确定哪些特征对模型最为重要;而在深度学习中,特征提取是自动进行的,通过多层神经网络结构直接从原始数据(也可能需要初步处理)中学习复杂特征,减少了对人工干预的依赖,使得模型能够处理更加复杂的数据和任务。计算
- 机器学习基础(4)
yyc_audio
深度学习python机器学习神经网络人工智能
超越基于常识的基准除了不同的评估方法,还应该利用基于常识的基准。训练深度学习模型就好比在平行世界里按下发射火箭的按钮,你听不到也看不到。你无法观察流形学习过程,它发生在数千维空间中,即使投影到三维空间中,你也无法解释它。唯一的反馈信号就是验证指标,就像隐形火箭的高度计。特别重要的是,我们需要知道火箭是否离开了地面。发射地点的海拔高度是多少?模型似乎有15%的精度——这算是很好吗?在开始处理一个数据
- 人工智能之数学基础:对线性代数中逆矩阵的思考?
每天五分钟玩转人工智能
机器学习深度学习之数学基础线性代数人工智能矩阵机器学习逆矩阵向量
本文重点逆矩阵是线性代数中的一个重要概念,它在线性方程组、矩阵方程、动态系统、密码学、经济学和金融学以及计算机图形学等领域都有广泛的应用。通过了解逆矩阵的定义、性质、计算方法和应用,我们可以更好地理解和应用线性代数知识,解决各种实际问题。关于逆矩阵的思考现在我们有一个计算过程如上所示,我们知道矩阵的作用就是函数,向量a先经过矩阵1进行函数作用,然后再经过矩阵2函数作用最后可以得到输出向量c,这个过
- uniapp学习笔记之知识点大总结
Qiuxuntao
uniappuni-app学习前端
文章目录一、uniapp介绍二、环境搭建2.1、利用HbuilderX初始化项目2.2、运行项目2.3、介绍项目目录和文件作用三、网络1、发起请求2、上传3、下载4、SocketTask1、SocketTask.onMessage(callback)2、SocketTask.send(object)3、SocketTask.close(object)4、SocketTask.onOpen(call
- 特斯拉 FSD 算法深度剖析:软件层面全解读
python算法(魔法师版)
算法机器学习人工智能深度学习神经网络计算机视觉
一、引言特斯拉的FSD(FullSelf-Driving)系统作为自动驾驶领域的前沿成果,其软件层面的算法设计至关重要。本文将从软件的角度,深入探讨特斯拉FSD所采用的算法,包括感知、规划、控制等多个方面,以期为读者呈现一个全面、详细的FSD算法全景图。二、特斯拉FSD系统概述特斯拉FSD系统旨在实现车辆的完全自动驾驶,涵盖从感知周围环境到做出驾驶决策的全过程。该系统依托于特斯拉自研的硬件平台和软
- 上线DeepSeek大模型,黄山“大位”智算中心正式点亮
人工智能
2月28日,智启黄山,算领未来——黄山“大位”智算中心点亮仪式在黄山市大位人工智能计算中心举行,标志着黄山“大位”智算中心正式投入运营。同日,DeepSeek-R1大模型在黄山“大位”正式上线,通过“顶尖大模型+普惠算力底座”的深度融合,构建黄山市人工智能创新生态。黄山市委常委、副市长王恒来出席并致辞。他表示,黄山“大位”智算中心的点亮,是黄山市贯彻落实习近平总书记关于"人工智能是引领这一轮科技革
- 机器学习|决策树|Gini指数和熵的区别|简单示例
漂亮_大男孩
机器学习决策树人工智能
如是我闻:在决策树模型中,Gini指数和熵(Entropy)是用来计算节点纯度的两种方法。它们都是评估分裂点的好坏,以选择最佳的属性来分裂。让我们先来了解一下这两种方法的定义,然后通过一个简单的例子来讨论它们之间的区别。Gini指数Gini指数是一个衡量数据分布不均匀程度的指标。在决策树中,它用于评估数据集的不纯度。Gini指数越低,数据的纯度越高。其计算公式为:Gini=1−∑i=1npi2Gi
- 00计算机视觉学习内容
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉(ComputerVision)开发需要掌握数学基础、编程语言、图像处理、机器学习、深度学习等多个方面的知识。以下是一个系统的学习路线:1️⃣数学基础(核心理论支撑)计算机视觉涉及很多数学概念,以下是必备数学知识:✅线性代数(矩阵运算是计算机视觉的核心)向量、矩阵运算(加减、乘法、转置)特征值与特征向量SVD(奇异值分解),用于图像压缩、降维齐次坐标变换(用于3D计算机视觉)✅概率统计(
- DeepSeek大模型如何提升论文与代码效率
智能计算研究中心
其他
内容概要DeepSeek大模型作为人工智能领域的前沿成果,通过670亿参数的混合专家架构(Mixture-of-Experts,MoE),在多模态任务处理与专业场景应用中展现了显著优势。其核心技术突破体现在多语言处理能力、视觉语言理解模块以及深度优化的自然语言处理算法上,能够覆盖学术研究、代码开发、内容创作等多元场景。例如,在论文写作领域,模型通过智能选题推荐、文献综述生成及SEO关键词拓展功能,
- Manus学习手册合集【建议收藏】
周师姐
学习pdf人工智能
这两天,一款通用AI智能体Manus还没发布就火了,因为还在内测中,用户需要邀请码才能够体验,这就导致原本免费的邀请码在二手平台最高被炒到8万8。相比于之前爆火的DeepSeek和ChatGPT这类AI对话工具,Manus是全球首款真正意义上的通用人工智能!没错,就是科幻电影里面能够独立思考,自主运行的人工智能!!manus学习资料:https://pan.xunlei.com/s/VOKk8Cq
- 10个热门AI API(2024年2月)
程序员后端
人工智能(AI)在当今数字时代发挥着重要的作用,为企业带来了全新的机遇和变革。AI不再是一种陌生的科技概念,而是已经渗透到各行各业,成为推动创新和提升效率的关键引擎。其核心优势在于能够处理大规模的数据、执行复杂的任务、模拟人类思维过程,并以前所未有的方式改善业务流程。AIAPI作为连接企业和强大AI技术的桥梁,扮演着至关重要的角色。通过使用AIAPI,企业能够快速、轻松地将先进的人工智能功能集成到
- KubeBlocks
喝醉酒的小白
K8s学习
KubeBlocks笔记概述KubeBlocks是一个开源的Kubernetes数据库Operator,旨在帮助用户在Kubernetes上运行和管理多种类型的数据库。它提供了通用的API和命令行工具kbcli,支持MySQL、PostgreSQL、MongoDB、Redis、Kafka等多种数据库引擎。主要特点高可用性:集成成熟的高可用解决方案,如Orchestrator、Patroni和Sen
- 人工智能学习大纲
互联网搬砖老肖
AI原力计划工具使用人工智能学习
前言人工智能正以惊人的速度发展,其潜力既令人兴奋,也引人深思。它既可能为解决全球性问题带来希望,也可能带来前所未有的挑战。人工智能时代的到来已是不可逆转的趋势,科幻电影中的某些场景或许将成为现实。我对人工智能的研究越深入,就越能感受到它的强大力量。我所担忧的不仅仅是它对就业市场的冲击,更是它可能对人类社会结构带来的深远影响。未来,对人工智能的理解可能像今天对电脑操作的掌握一样重要。掌握人工智能技术
- 01计算机视觉学习计划
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉系统学习计划(3-6个月)本计划按照数学→编程→图像处理→机器学习→深度学习→3D视觉→项目实战的顺序,确保从基础到高级,结合理论和实践。第一阶段(第1-2个月):基础夯实✅目标:掌握数学基础、Python/C++编程、基本图像处理1️⃣数学基础(2周)每日2小时线性代数:矩阵运算、特征值分解(推荐《线性代数及其应用》)概率统计:高斯分布、贝叶斯定理微积分:偏导数、梯度下降傅里叶变换:图
- 决策树 vs 神经网络:何时使用?
HP-Succinum
机器学习决策树神经网络算法
目录1.决策树(DecisionTrees)1.1特点1.2优点1.3缺点1.4适用场景2.神经网络(NeuralNetworks)2.1特点2.2优点2.3缺点2.4适用场景3.何时选择哪种方法?4.结合使用的可能性5.总结在机器学习领域,决策树(DecisionTrees)和神经网络(NeuralNetworks)是两种常见但风格截然不同的算法。它们各自适用于不同类型的问题,本文将介绍它们的特
- 特斯拉FSD系统:自动驾驶的未来
百态老人
人工智能笔记
FSD系统概述FSD(FullSelf-Driving)系统是特斯拉研发的一套高级自动驾驶技术,旨在实现车辆在各种道路和驾驶场景下的完全自动驾驶。FSD系统通过集成先进的计算机视觉、深度学习、传感器融合等技术,利用车辆上安装的多种传感器和先进的计算机视觉技术,实现对周围环境的感知和理解。特斯拉通过不断收集和分析实际道路数据,持续优化其自动驾驶算法,使得FSD技术的安全性和可靠性得到了大幅提升.FS
- 特斯拉FSD不同版本的进化
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
特斯拉,FSD,自动驾驶,深度学习,计算机视觉,强化学习,神经网络,模型训练1.背景介绍特斯拉自2016年推出Autopilot以来,一直致力于开发全自动驾驶系统,其目标是实现完全无人驾驶,让汽车能够像人类一样感知周围环境,做出安全可靠的驾驶决策。FSD(FullSelf-Driving)是特斯拉自动驾驶系统的最高级别,它旨在实现车辆在任何道路和环境条件下都能安全自主驾驶的能力。FSD的开发是一个
- Manus AI:全球首款通用型 AI Agent 的创新与挑战
萧鼎
python基础到进阶教程人工智能
1.引言:AIAgent时代的到来人工智能正在从单纯的对话式助手进化为更高级的智能体(Agent),能够自主完成任务,而不仅仅是提供信息或建议。2025年3月6日,由中国团队Monica推出的ManusAI正式亮相,号称全球首款通用型AIAgent(自主智能体)。与传统的AI助手相比,Manus不仅能够理解用户的自然语言指令,还能拆解任务、自动执行,并交付完整的成果。这标志着AI进入了一个新的发展
- 使用 Dlib 库进行人脸检测和人脸识别
萧鼎
python基础到进阶教程计算机视觉人工智能python人脸识别人脸检测
使用Dlib库进行人脸检测和人脸识别什么是Dlib?Dlib是一个广泛使用的C++库,提供了多种用于机器学习和计算机视觉的工具。它包含了人脸检测、人脸识别、物体检测、图像处理等功能。Dlib具有高效、易用的Python接口,因此它也被广泛应用于Python中进行深度学习和计算机视觉任务。安装Dlib首先,我们需要在Python环境中安装Dlib库。你可以通过pip进行安装:pipinstalldl
- 介绍常见的图片分类模型与算法
萧鼎
python基础到进阶教程算法分类数据挖掘
介绍常见的图片分类模型与算法在机器学习和深度学习的领域中,图片分类任务是一个广泛的应用场景。随着深度学习技术的飞速发展,很多强大的图像分类算法和模型已经被提出,广泛应用于从医疗影像到自动驾驶、从人脸识别到图像检索等多个领域。本文将重点介绍多种用于图像分类的经典算法与模型,帮助你了解在图像分类任务中常用的技术。1.传统机器学习模型在深度学习崭露头角之前,传统的机器学习模型是图像分类的主流方法。这些模
- AI与大数据融合:技术路径与行业赋能
互联网Ai好者
人工智能大数据
在数字化浪潮中,数据已成为驱动社会与商业变革的核心生产要素。据IDC预测,2025年全球数据总量将增长至175ZB,其中物联网设备、社交媒体及企业数字化系统贡献了80%的增量数据。面对海量异构数据的处理需求,传统分析工具已显现出明显局限:Gartner研究指出,仅35%的企业能有效利用其数据资产。在此背景下,人工智能技术通过算法突破与算力跃迁,正重塑大数据价值挖掘范式,构建从数据感知到决策闭环的全
- AI大模型在职业教育中的应用解决方案
中年猿人
人工智能ai学习
1.引言随着新经济、新技术的加速发展和经济结构的不断调整,职业教育迎来了新的发展机遇与挑战。传统的职业教育模式难以满足日益个性化、多样化的学习需求,同时,技术快速更迭使得职业技能更新频率大幅提高。这些变化要求职业教育能够更加灵活、高效地适应劳动力市场的需求,并为学生提供与时俱进的技能培养。人工智能(AI)作为一种前沿的科技趋势,其大模型技术通过强大的数据处理能力和学习算法,在众多行业中均展现了巨大
- STM32江科大学习笔记
weixin_38647099
stm32单片机学习
STM32江科大学习笔记-制作中...GPIO操作其它的库函数输出流程输出的库函数输出的例子输入流程输入的库函数输入的例子栗子按键开关类1个按键-控制开跟关2个按键-分别控制开跟关按键双击事件按键长按事件外设模块类蜂鸣器OLED屏幕光敏传感器s90G舵机GPIO操作其它的库函数以下是GPIO其它函数/***@brief初始化指定的端口引脚*@paramGPIOx:设置的外设,其中x可以是(A到G)
- 弹性算力革命:企业级GPU云服务如何重构AI与图形处理的效能边界
企业级GPU云服务是一种面向企业用户,基于云计算技术,将强大的图形处理器(GPU)资源以服务的形式提供给企业的创新模式。通过这种模式,企业无需自行购置、安装和维护昂贵的GPU硬件设备,只需按需从云端获取GPU计算资源,就能满足自身多样化的业务需求。随着人工智能、大数据、深度学习、虚拟现实以及高性能计算等前沿技术在各行业的深入渗透,企业对于大规模并行计算能力的要求越来越高。GPU凭借其卓越的并行计算
- 弹性算力革命:企业级GPU云服务如何重构AI与图形处理的效能边界
企业级GPU云服务是一种面向企业用户,基于云计算技术,将强大的图形处理器(GPU)资源以服务的形式提供给企业的创新模式。通过这种模式,企业无需自行购置、安装和维护昂贵的GPU硬件设备,只需按需从云端获取GPU计算资源,就能满足自身多样化的业务需求。随着人工智能、大数据、深度学习、虚拟现实以及高性能计算等前沿技术在各行业的深入渗透,企业对于大规模并行计算能力的要求越来越高。GPU凭借其卓越的并行计算
- 量化投资与算法交易
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介量化投资(Quantitativeinvestment)和算法交易(AlgorithmicTrading),两者是近几年兴起的两个热门词汇。市场对这两个词汇的认识也是逐渐加深。在过去几年里,人们普遍认为,算法交易和机器学习结合是未来股票、期货等金融产品的必然趋势。机器学习是由多个数据源(如财务报表、交易历史数据、社交网络数据等)自动分析生成的模型,能够预测出股价
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文