学习来源:李沐老师
%matplotlib inline
import random
import torch
from d2l import torch as d2l
根据带有噪声的线性模型构造一个人造数据集
def synthetic_data(w, b, num_examples):
"""生成y=Xw+b+噪音"""
X = torch.normal(0, 1, (num_examples, len(w)))
y = torch.matmul(X, w) + b
y += torch.normal(0, 0.01, y.shape)
return X, y.reshape((-1, 1))
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
print('features:', features[0], '\nlabel:', labels[0])
features: tensor([1.2000, 0.0916])
label: tensor([6.2911])
d2l.set_figsize()
d2l.plt.scatter(features[:, (1)].detach().numpy(), labels.detach().numpy(), 1)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-soglJxOy-1652711383447)(output_11_1.svg)]
def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
# 这些样本是随机读取的,没有特定的顺序
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
batch_indices = torch.tensor(indices[i:min(i +
batch_size, num_examples)])
yield features[batch_indices], labels[batch_indices]
batch_size = 10
for X, y in data_iter(batch_size, features, labels):
print(X, '\n', y)
break
tensor([[-0.4661, 0.6564],
[-1.0357, 1.5640],
[-1.1484, -0.2926],
[-0.1746, 0.1806],
[-1.1770, -0.5096],
[ 0.6306, -0.5774],
[-1.7197, -0.2219],
[ 0.1825, -0.4533],
[-1.2249, 0.7895],
[ 1.4173, -0.3152]])
tensor([[ 1.0428],
[-3.1820],
[ 2.8842],
[ 3.2444],
[ 3.5915],
[ 7.4257],
[ 1.4984],
[ 6.1103],
[-0.9367],
[ 8.1198]])
定义初始化模型参数
w = torch.normal(0, 0.01, size=(2, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
定义模型
def linreg(X, w, b): #@save
"""线性回归模型"""
return torch.matmul(X, w) + b
定义损失函数
def squared_loss(y_hat, y): #@save
"""均方损失"""
return (y_hat - y.reshape(y_hat.shape))**2 / 2
定义优化算法
def sgd(params, lr, batch_size): #@save
"""小批量随机梯度下降"""
with torch.no_grad():
for param in params:
param -= lr * param.grad / batch_size
param.grad.zero_()
训练过程
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, labels):
l = loss(net(X, w, b), y) # X和y的小批量损失
# 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
# 并以此计算关于[w,b]的梯度
l.sum().backward()
sgd([w, b], lr, batch_size) # 使用参数的梯度更新参数
with torch.no_grad():
train_l = loss(net(features, w, b), labels)
print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')
epoch 1, loss 0.042694
epoch 2, loss 0.000164
epoch 3, loss 0.000049
print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')
w的估计误差: tensor([ 0.0005, -0.0004], grad_fn=)
b的估计误差: tensor([-8.9169e-05], grad_fn=)
生成数据集
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
调用框架中现有的API来读取数据
def load_array(data_arrays, batch_size, is_train=True): #@save
"""构造一个PyTorch数据迭代器"""
dataset = data.TensorDataset(*data_arrays)
return data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
next(iter(data_iter))
[tensor([[-0.0408, 1.0486],
[-1.6154, -0.5745],
[ 0.4219, -0.7431],
[-1.0670, 0.0349],
[-0.3468, 0.9207],
[-0.2918, 0.2436],
[ 1.5633, -0.4152],
[-0.4183, 0.8276],
[-0.7691, 0.5424],
[-1.2084, 0.7723]]),
tensor([[ 0.5456],
[ 2.9275],
[ 7.5761],
[ 1.9399],
[ 0.3734],
[ 2.7938],
[ 8.7315],
[ 0.5322],
[ 0.8215],
[-0.8483]])]
使用框架的预定义好的层
# nn是神经网络的缩写
from torch import nn
net = nn.Sequential(nn.Linear(2, 1))
初始化模型参数
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)
tensor([0.])
计算均方误差使用的是MSELoss类,也称为平方范数
loss = nn.MSELoss()
实例化SGD实例
trainer = torch.optim.SGD(net.parameters(), lr=0.03)
训练过程代码与我们从零开始实现时所做的非常相似
num_epochs = 3
for epoch in range(num_epochs):
for X, y in data_iter:
l = loss(net(X) ,y)
trainer.zero_grad()
l.backward()
trainer.step()
l = loss(net(features), labels)
print(f'epoch {epoch + 1}, loss {l:f}')
epoch 1, loss 0.000321
epoch 2, loss 0.000092
epoch 3, loss 0.000093