一、数据集介绍
该数据集共有60000张彩色图像,这些图像是32*32,分为10个类,每类6000张图。这里面有50000张用于训练,构成了5个训练批,每一批10000张图;另外10000用于测试,单独构成一批。测试批的数据里,取自10类中的每一类,每一类随机取1000张。抽剩下的就随机排列组成了训练批。注意一个训练批中的各类图像并不一定数量相同,总的来看训练批,每一类都有5000张图。
下面这幅图就是列举了10各类,每一类展示了随机的10张图片:
二、搭建神经网络模型
使用CIFAR10网路模型,基于pytorch搭建网络模型
import torch
from torch import nn
class Test(nn.Module):
def __init__(self):
super(Test, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, padding=2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
def forward(self,x):
x = self.model(x)
return x
三、数据集的准备及加载
使用torchvision.datasets.CIFAR10()加载数据集,train=True表示数据集为训练数据集,train=False表示数据集为测试集,dowwnload=True表示下载数据集,本地存在数据集不会再次下载。
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
from model import *
# 定义训练设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 准备数据集
train_data = torchvision.datasets.CIFAR10("dataset", train=True, transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10("dataset", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
train_data_size = len(train_data)
test_data_size = len(test_data)
# print("训练数据集的长度为{}".format(train_data_size))
# print("测试数据集的长度为{}".format(test_data_size))
# 利用DataLoader来加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)
四、神经网络、损失函数、优化器等加载
test = Test()
test = test.to(device)
# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)
# 优化器
learning_rate = 0.01
optimizer = torch.optim.SGD(test.parameters(), lr=learning_rate)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
epoch = 30
# 添加Tensorboard
writer = SummaryWriter("logs_train")
五、训练、测试、模型保存
start_time = time.time()
for i in range(epoch):
print("-----第{}轮训练开始------".format(i+1))
# 训练步骤开始
test.train()
for data in train_dataloader:
imgs,targets = data
imgs = imgs.to(device)
targets = targets.to(device)
output = test(imgs)
loss = loss_fn(output, targets)
# 优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
if total_train_step % 100 == 0:
end_time = time.time()
print(end_time - start_time)
print("训练次数{}, Loss:{}".format(total_train_step, loss.item()))
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 测试步骤开始
test.eval()
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = test(imgs)
loss = loss_fn(outputs, targets)
total_test_loss += loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy += accuracy
print("整体测试集上的Loss: {}".format(total_test_loss))
print("整体测试集上的正确率: {}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
total_test_step += 1
torch.save(test, "test_{}.pth".format(i))
print("模型已保存")
writer.close()
六、模型的加载及测试
import torch
import torchvision
from PIL import Image
from model import *
CLASS = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
image_path = "./imgs/dog.png"
image = Image.open(image_path)
# print(image)
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
torchvision.transforms.ToTensor()])
image = transform(image)
# print(image.shape)
model = torch.load("test_99.pth", map_location=torch.device('cpu'))
# print(model)
image = torch.reshape(image, (1, 3, 32, 32))
model.eval()
with torch.no_grad():
output = model(image)
ret = output.argmax(1)
ret = ret.numpy()
print("预测结果为:{}".format(CLASS[ret[0]]))