- Matlab普通克里金插值及点云处理
心之澄澈
matlab开发语言点云
克里金插值是一种常用的地理空间插值方法,用于估计未知位置的属性值。在本文中,我们将介绍如何在Matlab中使用普通克里金插值方法进行点云处理。克里金插值的基本原理是根据已知点的属性值和它们之间的空间关系,估计未知点的属性值。普通克里金插值方法假设属性值是平稳的,并使用半变异函数来描述属性值的空间变异性。首先,我们需要准备一些数据。假设我们有一组点云数据,其中每个点都有一个属性值。以下是一个简单的示
- 逆向工程完全指南:从入门到精通的核心路径与应用全景
xMathematics
大数据人工智能逆向工程
逆向工程完全指南:从入门到精通的核心路径与应用全景逆向工程基础认知与价值解析逆向工程定义与技术原理逆向工程本质上是一种“从物理实体到数字模型”的技术转化过程。其核心在于通过对已有实物的测量和分析,构建出对应的数字模型。具体实现路径主要依赖于三维扫描与点云处理流程。三维扫描技术能够快速、准确地获取实物的表面形状和尺寸信息,生成大量的点云数据。这些点云数据就像是数字模型的“原材料”,后续需要进行点云处
- Matlab 点云加权最小二乘法优化
完美代码
matlab最小二乘法开发语言点云
Matlab点云加权最小二乘法优化随着计算机视觉和三维图形学的发展,点云数据的处理和分析变得越来越重要。点云是三维空间中由大量的点组成的数据集合,常用于描述物体的形状和表面几何信息。在点云处理中,经常需要使用迭代加权最小二乘法对点云数据进行拟合优化。本文将介绍使用Matlab实现点云迭代加权最小二乘法优化的方法,并提供相应的源代码。点云表达首先,我们需要将点云数据以合适的方式表示在Matlab中。
- PCL 计算点云OBB包围盒——PCA主成分分析法
点云侠'
点云学习算法c++开发语言计算机视觉人工智能
目录一、概述1.1原理1.2实现步骤1.3应用场景1.4注意事项二、关键函数2.1头文件2.2读取点云2.3计算点云质心和协方差矩阵2.4协方差矩阵分解求特征值和特征向量2.5校正主方向2.6将输入点云转换至原点2.7计算包围盒2.8构建四元数和位移向量2.9结果可视化三、完整代码四、结果内容抄自CSDN点云侠:【2024最新版】PCL点云处理算法汇总(C++长期更新版)。质量无忧,永久免费,可放
- 用Python实现AIGC驱动的3D模型生成:完整教程
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶pythonAIGC3dai
用Python实现AIGC驱动的3D模型生成:完整教程关键词:AIGC、3D模型生成、Python、深度学习、计算机图形学、生成对抗网络、点云处理摘要:本文详细介绍了如何使用Python实现AIGC(人工智能生成内容)驱动的3D模型生成技术。我们将从基础概念出发,逐步深入讲解3D模型生成的原理、算法实现和实际应用。内容包括3D数据表示方法、生成模型架构设计、训练策略优化以及完整的Python实现代
- halcon 点云处理_Halcon三维模型预处理(1):调平的三大手法
weixin_39944074
halcon点云处理
面结构光拍摄生成的点云模型,往往相对系统坐标系是有角度的。首先讲一下调平的目的:1.为接下来的预处理切除背景面做准备3.不做调平,后续处理会很麻烦,因为不清楚坐标系在平台的为位置2.对于无序抓取项目,平台相对相机可能是有角度的,将抓取平台调整到与相机平行,可以以Z轴方向,从高到低获取抓取物点云。处理速度更快,且干扰更少。常见的调平手法有三种。一.拟合平面方式该方法适合平面点云模型的调平处理回顾一下
- 4:点云处理—去噪、剪切、调平
Echo``
三维点云处理图像处理计算机视觉机器学习人工智能c++算法
1.点云去噪dev_clear_window()dev_open_window(0,0,560,560,'black',WindowHandle)GenParamNames:=['lut','intensity','light_position','disp_pose','alpha']GenParamValues:=['color1','coord_z','0.00.0-0.31.0','tru
- 11:点云处理—三维显示公共类(另一个版本)
Echo``
三维点云处理c++人工智能计算机视觉图像处理
halconAlg.h#ifndef__KD_HALCON_ALG_H__#define__KD_HALCON_ALG_H__#include"HalconCpp.h"#include"HDevThread.h"#includeusingnamespaceHalconCpp;voidaction(longwin,intwidth,intheight,HTupleObjectModel3D);voi
- 【SLAM中的点云处理:从基础到实战】
Unpredictable222
SLAM算法自动驾驶自主导航算法自动驾驶ubuntuc++笔记
最近一直在学SLAM算法,发现点云处理是非常非常重要的,我就再认真学了一遍关于点云处理的内容(看了高翔老师的一本书——《自动驾驶与机器人中的SLAM技术:从理论到实践》,写得非常好,还有配套的代码),这篇博客就作为我的点云处理学习笔记,分享给大家!1.引言点云在SLAM中的核心作用:激光雷达SLAM(如LOAM)、三维重建、自动驾驶感知。四大基础任务:最近邻搜索(数据关联、特征匹配)。几何拟合(平
- 10:点云处理—QT显示点云
Echo``
三维点云处理qt开发语言人工智能计算机视觉视觉检测算法
#include#include#include#include////main.cpp//#include//#include//#include//#include//#include//usingnamespaceQtDataVisualization;//classSurfaceViewer:publicQWidget{//Q_OBJECT//public://explicitSurfac
- CloudCompare中CCCoreLib模块内容
点云SLAM
点云数据处理技术人工智能算法
在CloudCompare的代码结构中,CCCoreLib(CloudCompareCoreLibrary)是核心计算库,主要用于几何计算、点云处理、网格操作等底层算法实现。该模块提供了数学工具、点云处理、最近邻搜索、网格算法、配准、分割、特征计算等核心功能,并且可以独立于CloudCompare主程序使用。1.CCCoreLib模块的主要内容CCCoreLib主要包含以下几个核心部分:类别功能描
- 大疆精灵4A无人机航空摄影测量外业数据采集完整操作流程 - 点云处理
AuSwift
无人机点云
无人机在航空摄影测量领域中发挥着重要的作用,能够高效地获取大范围地理信息数据。本文将介绍大疆精灵4A无人机的航空摄影测量外业数据采集的完整操作流程,并重点讨论点云处理的相关内容。以下是详细的操作步骤和源代码示例。准备工作在开始操作之前,需要完成以下准备工作:确保大疆精灵4A无人机已经组装好并装载了相机设备。确保电池充足并安装在无人机上。启动无人机遥控器并连接至手机或平板电脑。飞行计划制定在开始飞行
- RANSAC算法在点云中的平面拟合及Python实现
心之澄澈
算法平面python
概述在计算机视觉和图像处理领域,点云是一种常见的数据表示形式,用于描述三维空间中的对象或场景。而平面拟合是点云处理中的重要任务之一,它可以帮助我们从复杂的环境中提取出平面结构的信息,用于分割、重建和分析等应用。RANSAC(RandomSampleConsensus)算法是一种经典的鲁棒估计方法,可用于拟合包含离群点的数据模型。在平面拟合问题中,RANSAC算法可以通过迭代随机采样和模型验证的方式
- PCL RANSAC算法在平面拟合中的方向向量约束
心之飞跃
算法平面人工智能PCL
PCLRANSAC算法在平面拟合中的方向向量约束RANSAC(RandomSampleConsensus)是一种经典的参数估计算法,用于从包含噪声或异常值的数据集中估计模型参数。在点云处理领域,PCL(PointCloudLibrary)库提供了对点云数据进行各种操作和分析的工具。本文将介绍如何使用PCL库中的RANSAC算法实现平面拟合,并添加方向向量约束的功能。平面拟合是点云处理中常用的任务之
- PCL利用RANSAC算法实现平面拟合
后端架构小白
算法平面人工智能PCL
PCL利用RANSAC算法实现平面拟合随着三维点云数据应用的日益广泛,点云库(PointCloudLibrary,PCL)成为了处理和分析点云数据的重要工具。在点云处理中,经常需要找到点云数据中的平面模型以进行后续操作,例如地面提取、物体分割等。而RANSAC(RandomSampleConsensus)算法是一种常用的平面拟合算法,能够有效地从包含噪声和异常值的点云数据中估计出平面模型参数。在P
- 用python将csv文件转换为pcd文件
随心Lc
pythoncsv
在做点云处理时,我们有时用激光雷达收集数据时,很可能默认为csv文件或者其他类型,但处理时可能会用pcd类型,二者用python转换如下:importosimportnumpyasnpimportpandasaspddata=pd.read_csv("Data/1.csv",encoding='utf-8')#读取csv文件data_234=data.iloc[:,1:4]#这里做的是切割,因为我
- PointCloudLib SAC-IA算法实现点云粗配准 C++版本
黄晓魚
halcon3dPCL点云处理深度神经网络点云处理PCL库Open3D库Point++模型使用算法c++人工智能PCL计算机视觉点云处理
测试效果简介采样一致性SAC_IA(SampleConsensusInitialAlignment)初始配准算法是一种在点云处理中广泛使用的技术,尤其在PCL(PointCloudLibrary)库中得到了实现。以下是对SAC_IA初始配准算法在PCL中的详细解析:一、算法概述SAC_IA算法是一种基于采样一致性的点云配准方法,主要用于解决点云数据之间的初始对齐问题。它通过随机采样两个点云中的点对
- 点云处理中阶 Sample Consensus(二)
哦里 哦里哦里给
PCL点云处理算法
目录一、深入理解RSNSAC二、RANSAC的缺点三、PCL中常用的SampleConsensus算法四、参考资料一、深入理解RSNSACRANSAC是“RANdomSAmpleConsensus”(随机抽样共识或采样一致性)的缩写,它是一种迭代方法,用于从包含异常值的一组数据中估计数学模型的参数。该算法由Fischler和Bolles于1981年发布。RANSAC算法假定我们要查看的所有数据均由
- PCL点云处理之自定义点云类型(四十四)
点云学徒
点云算法合集PCL点云处理学习c++开发语言后端聚类分类
PCL点云处理之自定义点云类型(四十四)前言一、自定义点云类型?二、代码前言一、自定义点云类型?PCL中有很多点云类型,比如pointxyzpointxyzi等,但有时候还是需要根据自己需要定义自己的点云类型,并能参与PCL模块功能的计算。二、代码#include//这头文件直接全垒上来算了,省的麻烦#include//标准C++库中的输入输出
- 3DMAX点云算法:实现毫米级BIM模型偏差检测(附完整代码)
夏末之花
人工智能
摘要本文基于激光雷达点云数据与BIM模型的高精度对齐技术,提出一种融合动态体素化与多模态特征匹配的偏差检测方法。通过点云预处理、语义分割、模型配准及差异分析,最终实现建筑构件毫米级偏差的可视化检测。文中提供关键代码实现,涵盖点云处理、特征提取与深度学习模型搭建。一、核心算法流程点云预处理与特征增强去噪与下采样:采用统计滤波与体素网格下采样,去除离群点并降低数据量。语义分割:基于PointNet++
- 仿射变换矩阵应用
点云学习
c++pcl点云处理算法pcl点云处理3D视觉
目录1原理介绍2数学公式推导3计算流程4示例代码仿射变换是计算机视觉、图像处理和点云处理中常用的几何变换之一。它不仅包括旋转和平移,还包括缩放和剪切等线性变换。仿射变换保持了点、直线和平面的平行性。1原理介绍仿射变换在三维空间中通常由一个3×3的线性变换矩阵和一个3×1的平移向量组成。通过使用齐次坐标,我们可以将仿射变换表示为一个4×4矩阵:其中:A是一个3×3的线性变换矩阵(包含旋转、缩放、剪切
- 计算机视觉|3D 点云处理黑科技:PointNet++ 原理剖析与实战指南
紫雾凌寒
AI炼金厂#深度学习#计算机视觉深度学习计算机视觉3dcnnPointNet++3d云3d云数据
一、引言在当今数字化与智能化快速发展的时代,3D点云处理技术在多个前沿领域中发挥着重要作用。特别是在自动驾驶和机器人视觉等领域,这项技术已成为实现智能化的关键支撑。以自动驾驶为例,车辆需要实时感知周围复杂的环境信息,包括行人、车辆、交通标志和路况等。3D点云数据能够提供高精度的三维空间信息,使自动驾驶车辆更准确地识别和定位周围物体,从而做出安全、合理的行驶决策。在城市街道上,自动驾驶车辆通过3D点
- 机器视觉3D上下料技术上的分析
视觉人机器视觉
杂说3dc#人工智能AI编程opencv开发语言
机器视觉3D上下料是工业自动化领域的重要应用,通过3D视觉技术引导机器人完成物料的精准抓取、定位和放置,尤其适用于复杂、无序或高精度的场景。以下是其核心内容梳理:核心组成3D视觉系统:硬件:常用3D相机(结构光、ToF、双目视觉等),如Kinect、IntelRealSense、工业级品牌(Keyence、康耐视,苏州大视通智能科技有限公司)。软件:点云处理(如PCL库)、三维匹配算法(ICP、深
- 点云处理库
妄想出头的工业炼药师
人工智能
https://github.com/mmolero/awesome-point-cloud-processing
- 利用 Open3D 保存并载入相机视角的简单示例
微凉的衣柜
点云处理python点云处理open3d
1.前言在使用Open3D进行三维可视化和点云处理时,有时需要将当前的视角(CameraViewpoint)保存下来,以便下次再次打开时能够还原到同样的视角。本文将演示如何在最新的Open3DGUI界面(o3d.visualization.gui/o3d.visualization.O3DVisualizer)中实现这一功能,并展示完整示例代码及运行效果。2.环境准备Python版本:3.xOpe
- 3.Halcon3D点云滤波-降采样/去除离群点/直通滤波/平滑计算/凸包计算
黄晓魚
halcon3dPCL点云处理深度神经网络3d
对点云进行滤波的主要意义和目的有以下几点:去除噪声和异常值:由于设备本身的误差或环境因素的影响,采集到的点云数据中可能会包含一些噪声和异常值。这些噪声和异常值会影响后续的点云处理和分析,因此需要通过滤波处理加以去除。提高数据质量:滤波处理可以有效地提高点云数据的质量和精度,使得点云数据更加准确和可靠。这对于后续的点云处理和分析具有重要的意义。局部计算与调整:点云滤波主要通过局部计算的方式,获得一个
- 计算多边形面积的PCL库
ZyqfCss
PCL
在计算机图形学和计算几何中,计算多边形的面积是一个常见的问题。PointCloudLibrary(PCL)是一个强大的开源库,提供了许多用于点云处理的功能。在PCL中,我们可以使用一些函数来计算二维多边形的面积。本文将介绍如何使用PCL库来计算多边形的面积,并提供相应的源代码示例。要计算多边形的面积,我们需要知道多边形的顶点坐标。假设我们已经有了一个二维平面上的多边形,其顶点坐标存储在一个PCL的
- PCL 计算点云的VFH特征
点云侠'
点云学习c++visualstudio开发语言算法3d
目录一、概述二、代码三、结果内容抄自CSDN点云侠:【2024最新版】PCL点云处理算法汇总(C++长期更新版)。质量无忧,可放心复制粘贴。一、概述 VFH(ViewpointFeatureHistogram)特征是一种三维点云描述子,它结合了点云的局部几何信息和视点信息,以提高物体识别和分类的精度。VFH特征通过计算每个点云的法向量分布,生成一个308维的特征直方图,用于表示该点云的形状特征。
- 从点云中剔除遮挡点
AuSwift
点云
在三维计算机视觉和点云处理中,点云是由大量的三维点组成的数据集。然而,有时候点云中的某些点可能会被其他物体所遮挡,这可能会对进一步的分析和处理造成困扰。本文将介绍如何使用MATLAB从点云中移除这些遮挡点。在开始之前,请确保你已经安装了MATLAB和PointCloudProcessingToolbox。接下来,我们将按照以下步骤进行操作。步骤1:加载点云数据首先,我们需要加载点云数据。假设我们的
- PCL 点云随机渲染颜色
MelaCandy
PCL点云算法与实战案例3d算法计算机视觉人工智能c++
目录一、概述1.1原理1.2实现步骤1.3应用场景二、代码实现2.1关键函数2.2完整代码三、实现效果PCL点云算法汇总及实战案例汇总的目录地址链接:PCL点云算法与项目实战案例汇总(长期更新)一、概述本文将介绍如何使用PCL库为点云中的每个点随机渲染颜色,并在PCL的可视化窗口中显示。这种方法适用于需要对点云中的不同点进行颜色区分的场景,可以帮助更直观地观察和分析点云数据。1.1原理在点云处理中
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在