注意力往往与encoder-decoder(seq2seq)框架搭在一起,假设我们编码前与解码后的序列如下:
编码时,我们将source通过非线性变换到中间语义:
则我们解码时,第i个输出为:
可以看到,不管i为多少,都是基于相同的中间语义C进行解码的,也就是说,我们的注意力对所有输出都是相同的。所以,注意力机制的任务就是突出重点,也就是说,我们的中间语义C对不同i应该有不同的侧重点,即上式变为:
常见的有Bahdanau Attention
e(h,s)代表一层全连接层。
及Luong Attention
代码的主要目标是通过一个描述时间的字符串,预测为数字形式的字符串。如“ten before ten o'clock a.m”预测为09:50
在jupyter上运行,代码如下:
1,导入模块,好像并没有全部使用到,如Permute,Multiply,Reshape,LearningRateScheduler等
1 from keras.layers importBidirectional, Concatenate, Permute, Dot, Input, LSTM, Multiply, Reshape2 from keras.layers importRepeatVector, Dense, Activation, Lambda3 from keras.optimizers importAdam4 #from keras.utils import to_categorical
5 from keras.models importload_model, Model6 #from keras.callbacks import LearningRateScheduler
7 importkeras.backend as K8
9 importmatplotlib.pyplot as plt10 %matplotlib inline11
12 importrandom13 #import math
14
15 importjson16 import numpy as np
2,加载数据集,以及翻译前和翻译后的词典
1 with open('data/Time Dataset.json','r') as f:2 dataset =json.loads(f.read())3 with open('data/Time Vocabs.json','r') as f:4 human_vocab, machine_vocab =json.loads(f.read())5
6 human_vocab_size =len(human_vocab)7 machine_vocab_size = len(machine_vocab)
这里human_vocab词典是将每个字符映射到索引,machine_vocab是将翻译后的字符映射到索引,因为翻译后的时间只包含0-9以及冒号:
3,定义数据处理方法
1 defpreprocess_data(dataset, human_vocab, machine_vocab, Tx, Ty):2 """
3 A method for tokenizing data.4
5 Inputs:6 dataset - A list of sentence data pairs.7 human_vocab - A dictionary of tokens (char) to id's.8 machine_vocab - A dictionary of tokens (char) to id's.9 Tx - X data size10 Ty - Y data size11
12 Outputs:13 X - Sparse tokens for X data14 Y - Sparse tokens for Y data15 Xoh - One hot tokens for X data16 Yoh - One hot tokens for Y data17 """
18
19 #Metadata
20 m =len(dataset)21
22 #Initialize
23 X = np.zeros([m, Tx], dtype='int32')24 Y = np.zeros([m, Ty], dtype='int32')25
26 #Process data
27 for i inrange(m):28 data =dataset[i]29 X[i] =np.array(tokenize(data[0], human_vocab, Tx))30 Y[i] = np.array(tokenize(data[1], machine_vocab, Ty))31
32 #Expand one hots
33 Xoh =oh_2d(X, len(human_vocab))34 Yoh =oh_2d(Y, len(machine_vocab))35
36 return(X, Y, Xoh, Yoh)37
38 deftokenize(sentence, vocab, length):39 """
40 Returns a series of id's for a given input token sequence.41
42 It is advised that the vocab supports and .43
44 Inputs:45 sentence - Series of tokens46 vocab - A dictionary from token to id47 length - Max number of tokens to consider48
49 Outputs:50 tokens -51 """
52 tokens = [0]*length53 for i inrange(length):54 char = sentence[i] if i < len(sentence) else ""
55 char = char if (char in vocab) else ""
56 tokens[i] =vocab[char]57
58 returntokens59
60 defids_to_keys(sentence, vocab):61 """
62 Converts a series of id's into the keys of a dictionary.63 """
64 reverse_vocab = {v: k for k, v invocab.items()}65
66 return [reverse_vocab[id] for id insentence]67
68 defoh_2d(dense, max_value):69 """
70 Create a one hot array for the 2D input dense array.71 """
72 #Initialize
73 oh =np.zeros(np.append(dense.shape, [max_value]))74 #oh=np.zeros((dense.shape[0],dense.shape[1],max_value)) 这样写更为直观
75
76 #Set correct indices
77 ids1, ids2 = np.meshgrid(np.arange(dense.shape[0]), np.arange(dense.shape[1]))78
79 #'F'表示一列列的展开,默认按行展开。将id序列中每个数字再one-hot化。
80 oh[ids1.flatten(), ids2.flatten(), dense.flatten('F').astype(int)] = 1
81
82 return oh
4,输入中最长的字符串为41,输出长度都是5,训练测试数据使用one-hot编码后的,训练集占比80%
1 Tx = 41 #Max x sequence length
2 Ty = 5 #y sequence length
3 X, Y, Xoh, Yoh =preprocess_data(dataset, human_vocab, machine_vocab, Tx, Ty)4
5 #Split data 80-20 between training and test
6 train_size = int(0.8*len(dataset))7 Xoh_train =Xoh[:train_size]8 Yoh_train =Yoh[:train_size]9 Xoh_test =Xoh[train_size:]10 Yoh_test = Yoh[train_size:]
5,定义每次新预测时注意力的更新
在预测输出yi-1后,预测yi时,我们需要不同的注意力分布,即重新生成这个分布
1 #Define part of the attention layer gloablly so as to
2 #share the same layers for each attention step.
3 defsoftmax(x):4 return K.softmax(x, axis=1)5 #重复矢量,用于将一个矢量扩展成一个维度合适的tensor
6 at_repeat =RepeatVector(Tx)7 #在最后一位进行维度合并
8 at_concatenate = Concatenate(axis=-1)9 at_dense1 = Dense(8, activation="tanh")10 at_dense2 = Dense(1, activation="relu")11 at_softmax = Activation(softmax, name='attention_weights')12 #这里参数名为axes。。虽然和axis是一个意思
13 at_dot = Dot(axes=1)14
15 #每次新的预测的时候都需要更新attention
16 defone_step_of_attention(h_prev, a):17 """18 Get the context.
19
20 Input:
21 h_prev - Previous hidden state of a RNN layer (m, n_h)
22 a - Input data, possibly processed (m, Tx, n_a)
23
24 Output:
25 context - Current context (m, Tx, n_a)
26"""
27 #Repeat vector to match a's dimensions
28 h_repeat =at_repeat(h_prev)29 #Calculate attention weights
30 i = at_concatenate([a, h_repeat]) #对应公式中x和yt-1合并
31 i = at_dense1(i)#对应公式中第一个Dense
32 i = at_dense2(i)#第二个Dense
33 attention = at_softmax(i)#Softmax,此时得到一个注意力分布
34 #Calculate the context
35 #这里使用新的attention与输入相乘,即注意力的核心原理:对于输入产生某种偏好分布
36 context = at_dot([attention, a])#Dot,使用注意力偏好分布作用于输入,返回更新后的输入
37
38 return context
以上,注意力的计算公式如下所示:
6,定义注意力层
1 defattention_layer(X, n_h, Ty):2 """
3 Creates an attention layer.4
5 Input:6 X - Layer input (m, Tx, x_vocab_size)7 n_h - Size of LSTM hidden layer8 Ty - Timesteps in output sequence9
10 Output:11 output - The output of the attention layer (m, Tx, n_h)12 """
13 #Define the default state for the LSTM layer
14 #Lambda层不需要训练参数,这里初始化状态
15 h = Lambda(lambda X: K.zeros(shape=(K.shape(X)[0], n_h)))(X)16 c = Lambda(lambda X: K.zeros(shape=(K.shape(X)[0], n_h)))(X)17 #Messy, but the alternative is using more Input()
18
19 at_LSTM = LSTM(n_h, return_state=True)20
21 output =[]22
23 #Run attention step and RNN for each output time step
# 这里就是每次预测时,先更新context,用这个新的context通过LSTM获得各个输出h
24 for _ inrange(Ty):25 #第一次使用初始化的注意力参数作用输入X,之后使用上一次的h作用输入X,保证每次预测的时候注意力都对输入产生偏好
26 context =one_step_of_attention(h, X)27 #得到新的输出
28 h, _, c = at_LSTM(context, initial_state=[h, c])29
30 output.append(h)31 #返回全部输出
32 return output
7,定义模型
1 layer3 = Dense(machine_vocab_size, activation=softmax)2 layer1_size=32
3 layer2_size=64
4 defget_model(Tx, Ty, layer1_size, layer2_size, x_vocab_size, y_vocab_size):5 """6 Creates a model.
7
8 input:
9 Tx - Number of x timesteps
10 Ty - Number of y timesteps
11 size_layer1 - Number of neurons in BiLSTM
12 size_layer2 - Number of neurons in attention LSTM hidden layer
13 x_vocab_size - Number of possible token types for x
14 y_vocab_size - Number of possible token types for y
15
16 Output:
17 model - A Keras Model.
18"""
19
20 #Create layers one by one
21 X = Input(shape=(Tx, x_vocab_size))22 #使用双向LSTM
23 a1 = Bidirectional(LSTM(layer1_size, return_sequences=True), merge_mode='concat')(X)24
25 #注意力层
26 a2 =attention_layer(a1, layer2_size, Ty)27 #对输出h应用一个Dense得到最后输出y
28 a3 = [layer3(timestep) for timestep ina2]29
30 #Create Keras model
31 model = Model(inputs=[X], outputs=a3)32
33 return model
8,训练模型
1 model =get_model(Tx, Ty, layer1_size, layer2_size, human_vocab_size, machine_vocab_size)2 #这里我们可以看下模型的构成,需要提前安装graphviz模块
3 from keras.utils importplot_model4 #在当前路径下生成模型各层的结构图,自己去看看理解
5 plot_model(model,show_shapes=True,show_layer_names=True)6 opt = Adam(lr=0.05, decay=0.04, clipnorm=1.0)7 model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])8 #(8000,5,11)->(5,8000,11),以时间序列而非样本序列去训练,因为多个样本间是没有“序”的关系的,这样RNN也学不到啥东西
9 outputs_train = list(Yoh_train.swapaxes(0,1))10 model.fit([Xoh_train], outputs_train, epochs=30, batch_size=100,verbose=2
如下为模型的结构图
9,评估
1 outputs_test = list(Yoh_test.swapaxes(0,1))2 score =model.evaluate(Xoh_test, outputs_test)3 print('Test loss:', score[0])
10,预测
这里就随机对数据集中的一个样本进行预测
3 i =random.randint(0, len(dataset))4
5 defget_prediction(model, x):6 prediction =model.predict(x)7 max_prediction = [y.argmax() for y inprediction]8 str_prediction = "".join(ids_to_keys(max_prediction, machine_vocab))9 return(max_prediction, str_prediction)10
11 max_prediction, str_prediction = get_prediction(model, Xoh[i:i+1])12
13 print("Input:" +str(dataset[i][0]))14 print("Tokenized:" +str(X[i]))15 print("Prediction:" +str(max_prediction))16 print("Prediction text:" + str(str_prediction))
11,还可以查看一下注意力的图像
1 i =random.randint(0, len(dataset))2
3 def plot_attention_graph(model, x, Tx, Ty, human_vocab, layer=7):4 #Process input
5 tokens =np.array([tokenize(x, human_vocab, Tx)])6 tokens_oh =oh_2d(tokens, len(human_vocab))7
8 #Monitor model layer
9 layer =model.layers[layer]10
11 layer_over_time = K.function(model.inputs, [layer.get_output_at(t) for t inrange(Ty)])12 layer_output =layer_over_time([tokens_oh])13 layer_output = [row.flatten().tolist() for row inlayer_output]14
15 #Get model output
16 prediction = get_prediction(model, tokens_oh)[1]17
18 #Graph the data
19 fig =plt.figure()20 fig.set_figwidth(20)21 fig.set_figheight(1.8)22 ax = fig.add_subplot(111)23
24 plt.title("Attention Values per Timestep")25
26 plt.rc('figure')27 cax = plt.imshow(layer_output, vmin=0, vmax=1)28 fig.colorbar(cax)29
30 plt.xlabel("Input")31 ax.set_xticks(range(Tx))32 ax.set_xticklabels(x)33
34 plt.ylabel("Output")35 ax.set_yticks(range(Ty))36 ax.set_yticklabels(prediction)37
38 plt.show()39 #这个图像如何看:先看纵坐标,从上到下,为15:48,生成1和5时注意力在four这个单词上,生成48分钟的时候注意力集中在before单词上,这个例子非常好
40 plot_attention_graph(model, dataset[i][0], Tx, Ty, human_vocab)
如图所示,在预测1和5时注意力在four单词上,预测4,8时注意力在before单词上,这比较符合逻辑。