深度学习之数据读取

1.ImageDataGenerator介绍

训练的时候读取本地图片以及类别

tf.keras.preprocessing.image.ImageDataGenerator(
    featurewise_center=False, samplewise_center=False,
    featurewise_std_normalization=False, samplewise_std_normalization=False,
    zca_whitening=False, zca_epsilon=1e-06, rotation_range=0, width_shift_range=0.0,
    height_shift_range=0.0, brightness_range=None, shear_range=0.0, zoom_range=0.0,
    channel_shift_range=0.0, fill_mode='nearest', cval=0.0, horizontal_flip=False,
    vertical_flip=False, rescale=None, preprocessing_function=None,
    data_format=None, validation_split=0.0, dtype=None
)

train_generator = ImageDataGenerator()

  • 生产图片的批次张量值并且提供数据增强功能
  • rescale=1.0 / 255,:标准化
  • zca_whitening=False: # zca白化的作用是针对图片进行PCA降维操作,减少图片的冗余信息
  • rotation_range=20:默认0, 旋转角度,在这个角度范围随机生成一个值
  • width_shift_range=0.2,:默认0,水平平移
  • height_shift_range=0.2:默认0, 垂直平移
  • shear_range=0.2:# 平移变换
  • horizontal_flip=True:水平翻转
  • zoom_range:随机缩放的范围

 

2、使用方法介绍

  • 使用flow(x, y, batch_size)
(x_train, y_train), (x_test, y_test) = cifar10.load_data()

datagen = ImageDataGenerator(
        featurewise_center=True,
        featurewise_std_normalization=True,
        rotation_range=20,
        width_shift_range=0.2,
        height_shift_range=0.2,
        horizontal_flip=True)

for e in range(epochs):
        print('Epoch', e)
        batches = 0
        for x_batch, y_batch in datagen.flow(x_train, y_train, batch_size=32):
            model.fit(x_batch, y_batch)

使用train_generator.flow_from_directory(

  • directory=path,# 读取目录

  • target_size=(h,w),# 目标形状

  • batch_size=size,# 批数量大小

  • class_mode='binary', # 目标值格式,One of "categorical", "binary", "sparse",

    • "categorical" :2D one-hot encoded labels
    • "binary" will be 1D binary labels
  • shuffle=True

 

data/
    train/
        dogs/
            dog001.jpg
            dog002.jpg
            ...
        cats/
            cat001.jpg
            cat002.jpg
            ...
    validation/
        dogs/
            dog001.jpg
            dog002.jpg
            ...
        cats/
            cat001.jpg
            cat002.jpg
            ...

 

 

def data_from_sequence(train_data_dir, batch_size, num_classes, input_size):
    """读取本地图片和标签数据,处理成sequence数据类型
  
    :return:
    """
    # 1、获取txt文件,打乱一次文件
    label_files = [os.path.join(train_data_dir, filename) for filename in os.listdir(train_data_dir) if filename.endswith('.txt')]
    print(label_files)
    random.shuffle(label_files)

    # 2、读取txt文件,解析出
    img_paths = []
    labels = []

    for index, file_path in enumerate(label_files):
        with open(file_path, 'r') as f:
            line = f.readline()
        line_split = line.strip().split(', ')
        if len(line_split) != 2:
            print('%s 文件中格式错误' % (file_path))
            continue
        # 获取图片名称和标签,转换格式
        img_name = line_split[0]
        label = int(line_split[1])

        # 图片完整路径拼接,并获取到图片和标签列表中(顺序一一对应)
        img_paths.append(os.path.join(train_data_dir, img_name))
        labels.append(label)

    # 3、进行标签类别处理,以及标签平滑
    labels = to_categorical(labels, num_classes)
    labels = smooth_labels(labels)

    # 4、进行所有数据的分割,训练集和验证集
    train_img_paths, validation_img_paths, train_labels, validation_labels = \
        train_test_split(img_paths, labels, test_size=0.15, random_state=0)
    print('总共样本数: %d, 训练样本数: %d, 验证样本数据: %d' % (
        len(img_paths), len(train_img_paths), len(validation_img_paths)))

    # 5、sequence序列数据制作
    train_sequence = GarbageDataSequence(train_img_paths, train_labels, batch_size,
                                         [input_size, input_size], use_aug=True)

    validation_sequence = GarbageDataSequence(validation_img_paths, validation_labels, batch_size,
                                              [input_size, input_size], use_aug=False)

    return train_sequence, validation_sequence
import math
import os
import random
import numpy as np
from PIL import Image
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.utils import to_categorical, Sequence
from sklearn.model_selection import train_test_split

3.pytorch使用 

import os
import torch
import torch.utils.data as data
from datasets.data_aug import *
import cv2 as cv


def get_train_path(self, list_path, file_path):
    image = []
    label = []
    with open(list_path, "r") as lines:
        for line in lines:
            img_path = os.path.join(file_path, line[:-3])
            image.append(img_path)
            label.append(line[-2:-1])
    return image, label


# 数据集
class expression_dataset(data.Dataset):
    # 自定义的参数
    def __init__(self, image, label,transforms=None,debug=False,test=False):
        self.paths = image
        self.labels = label
        self.transforms = transforms
        self.debug=debug
        self.test=test

    # 返回图片个数
    def __len__(self):
        return len(self.paths)

    # 获取每个图片
    def __getitem__(self, item):
        # path
        img_path =self.paths[item]
        # read image
        img =cv.imread(img_path) #BGR
        # RGB
        img = cv.cvtColor(img,cv.COLOR_BGR2RGB)
        # augmentation
        if self.transforms is not None:
            img = self.transforms(img)
        # read label
        label = self.labels[item]
        # return
        return torch.from_numpy(img).float(), int(label)




# image,label = get_train_path(list_path = '/home/aries/Downloads/datasets/expression/lists/traine.txt',
#                file_path='/home/aries/Downloads/datasets/expression/')
#
# train_data = expression_dataset(image,label)
#
# train_dataset = data.DataLoader(train_data, batch_size=2, shuffle=None,num_workers=4)
#
# for i, (img,lbl) in enumerate(train_dataset):
#     print(img.shape)
#     print(lbl)

 

你可能感兴趣的:(人工智能,tensorflow,pytorch,深度学习,人工智能)