机器学习笔记(四)决策树剪枝

一、什么是剪枝?

顾名思义,剪枝就是指将决策树的某些内部节点下面的节点都删掉,留下来的内部决策节点作为叶子节点。

二、为什么要剪枝?

决策树是充分考虑了所有的数据点而生成的复杂树,它在学习的过程中为了尽可能的正确的分类训练样本,不停地对结点进行划分,因此这会导致整棵树的分支过多,造成决策树很庞大。决策树过于庞大,有可能出现过拟合的情况,决策树越复杂,过拟合的程度会越高。

所以,为了避免过拟合,咱们需要对决策树进行剪枝。

一般情况下,有两种剪枝策略,分别是预剪枝后剪枝

下面还是通过西瓜这个例子来讲解。

机器学习笔记(四)决策树剪枝_第1张图片

 

首先,先按照信息增益对这10个训练样本构造决策树,方法还是和上面的ID3算法提到的一样。

先计算最开始的训练样本的熵。好瓜有5个,坏瓜有5个,则信息熵为

再计算按照各个属性划分后的信息熵:

机器学习笔记(四)决策树剪枝_第2张图片 

同理可得,

机器学习笔记(四)决策树剪枝_第3张图片 

所以,选择脐部作为根节点。按照同样的思路,可以得到一颗为未剪枝前的决策树。

机器学习笔记(四)决策树剪枝_第4张图片 

三、预剪枝

预剪枝就是在构造决策树的过程中,先对每个结点在划分前进行估计,如果当前结点的划分不能带来决策树模型泛化性能的提升,则不对当前结点进行划分并且将当前结点标记为叶结点。

如下图所示,在构造的时候就考虑到剪枝操作。

1) 首先,是否要按照“脐部”划分。在划分前,只有一个根节点,也是叶子节点,标记为“好瓜”。精度提高,所以按照“脐部”进行划分。

2) 当按照脐部进行划分后,会对结点 (2) 进行划分,再次使用信息增益挑选出值最大的那个特征,信息增益值最大的那个特征是“色泽”,则使用“色泽”划分后决策树为。但是,使用“色泽”划分后,编号为{5}的样本会从“好瓜”被分类为“坏瓜”,只有{4,8,11,12}被正确分类,精确度为47×100%=57.1%。所以,预剪枝操作会不再被这个节点进行划分。

3) 对于节点(3),最优属性为“根蒂”。但是,这么划分后精确度仍然是 71.4% ,所以也不会对这个节点进行操作。

预剪枝得到的决策树如下图所示。

机器学习笔记(四)决策树剪枝_第5张图片

机器学习笔记(四)决策树剪枝_第6张图片 

优点:

降低过拟合风险

显著减少训练时间和测试时间开销

缺点:

欠拟合风险:有些分支的当前划分虽然不能提升泛化性能,但在其基础上进行的后续划分却有可能显著提高性能。预剪枝基于“贪心”本质禁止这些分支展开,带来了欠拟合风险。

四、后剪枝 

后剪枝就是先把整颗决策树构造完毕,然后自底向上的对非叶结点进行考察,若将该结点对应的子树换为叶结点能够带来泛化性能的提升,则把该子树替换为叶结点。

机器学习笔记(四)决策树剪枝_第7张图片 

机器学习笔记(四)决策树剪枝_第8张图片 

机器学习笔记(四)决策树剪枝_第9张图片 

基于后剪枝策略得到的最终决策树如图所示

机器学习笔记(四)决策树剪枝_第10张图片 

优点: 

后剪枝比预剪枝保留了更多的分支, 欠拟合风险小 泛化性能往往优于预剪枝决策树

缺点:

 

训练时间开销大 :后剪枝过程是在生成完全决策树之后进行的,需要自底向上对所有非叶结点逐一计算

五、代码实现

1.创建数据集

import math
import numpy as np 
 
 
# 创建西瓜书数据集2.0
def createDataXG20():
    data = np.array([['青绿', '蜷缩', '浊响', '清晰', '凹陷', '硬滑']
                    , ['乌黑', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑']
                    , ['乌黑', '蜷缩', '浊响', '清晰', '凹陷', '硬滑']
                    , ['青绿', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑']
                    , ['浅白', '蜷缩', '浊响', '清晰', '凹陷', '硬滑']
                    , ['青绿', '稍蜷', '浊响', '清晰', '稍凹', '软粘']
                    , ['乌黑', '稍蜷', '浊响', '稍糊', '稍凹', '软粘']
                    , ['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '硬滑']
                    , ['乌黑', '稍蜷', '沉闷', '稍糊', '稍凹', '硬滑']
                    , ['青绿', '硬挺', '清脆', '清晰', '平坦', '软粘']
                    , ['浅白', '硬挺', '清脆', '模糊', '平坦', '硬滑']
                    , ['浅白', '蜷缩', '浊响', '模糊', '平坦', '软粘']
                    , ['青绿', '稍蜷', '浊响', '稍糊', '凹陷', '硬滑']
                    , ['浅白', '稍蜷', '沉闷', '稍糊', '凹陷', '硬滑']
                    , ['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '软粘']
                    , ['浅白', '蜷缩', '浊响', '模糊', '平坦', '硬滑']
                    , ['青绿', '蜷缩', '沉闷', '稍糊', '稍凹', '硬滑']])
    label = np.array(['是', '是', '是', '是', '是', '是', '是', '是', '否', '否', '否', '否', '否', '否', '否', '否', '否'])
    name = np.array(['色泽', '根蒂', '敲声', '纹理', '脐部', '触感'])
    return data, label, name
 
#划分测试集与训练集
def splitXgData20(xgData, xgLabel):
    xgDataTrain = xgData[[0, 1, 2, 5, 6, 9, 13, 14, 15, 16],:]
    xgDataTest = xgData[[3, 4, 7, 8, 10, 11, 12],:]
    xgLabelTrain = xgLabel[[0, 1, 2, 5, 6, 9, 13, 14, 15, 16]]
    xgLabelTest = xgLabel[[3, 4, 7, 8, 10, 11, 12]]
    return xgDataTrain, xgLabelTrain, xgDataTest, xgLabelTest
 

2.生成决策树

# 定义一个常用函数 用来求numpy array中数值等于某值的元素数量
equalNums = lambda x,y: 0 if x is None else x[x==y].size
 
 
# 定义计算信息熵的函数
def singleEntropy(x):
    """计算一个输入序列的信息熵"""
    # 转换为 numpy 矩阵
    x = np.asarray(x)
    # 取所有不同值
    xValues = set(x)
    # 计算熵值
    entropy = 0
    for xValue in xValues:
        p = equalNums(x, xValue) / x.size 
        entropy -= p * math.log(p, 2)
    return entropy
    
    
# 定义计算条件信息熵的函数
def conditionnalEntropy(feature, y):
    """计算 某特征feature 条件下y的信息熵"""
    # 转换为numpy 
    feature = np.asarray(feature)
    y = np.asarray(y)
    # 取特征的不同值
    featureValues = set(feature)
    # 计算熵值 
    entropy = 0
    for feat in featureValues:
        # 解释:feature == feat 是得到取feature中所有元素值等于feat的元素的索引(类似这样理解)
        #       y[feature == feat] 是取y中 feature元素值等于feat的元素索引的 y的元素的子集
        p = equalNums(feature, feat) / feature.size 
        entropy += p * singleEntropy(y[feature == feat])
    return entropy
    
    
# 定义信息增益
def infoGain(feature, y):
    return singleEntropy(y) - conditionnalEntropy(feature, y)
 
 
# 定义信息增益率
def infoGainRatio(feature, y):
    return 0 if singleEntropy(feature) == 0 else infoGain(feature, y) / singleEntropy(feature)
 
# 特征选取
def bestFeature(data, labels, method = 'id3'):
    assert method in ['id3', 'c45'], "method 须为id3或c45"
    data = np.asarray(data)
    labels = np.asarray(labels)
    # 根据输入的method选取 评估特征的方法:id3 -> 信息增益; c45 -> 信息增益率
    def calcEnt(feature, labels):
        if method == 'id3':
            return infoGain(feature, labels)
        elif method == 'c45' :
            return infoGainRatio(feature, labels)
    # 特征数量  即 data 的列数量
    featureNum = data.shape[1]
    # 计算最佳特征
    bestEnt = 0 
    bestFeat = -1
    for feature in range(featureNum):
        ent = calcEnt(data[:, feature], labels)
        if ent >= bestEnt:
            bestEnt = ent 
            bestFeat = feature
        # print("feature " + str(feature + 1) + " ent: " + str(ent)+ "\t bestEnt: " + str(bestEnt))
    return bestFeat, bestEnt 
 
 
# 根据特征及特征值分割原数据集  删除data中的feature列,并根据feature列中的值分割 data和label
def splitFeatureData(data, labels, feature):
    """feature 为特征列的索引"""
    # 取特征列
    features = np.asarray(data)[:,feature]
    # 数据集中删除特征列
    data = np.delete(np.asarray(data), feature, axis = 1)
    # 标签
    labels = np.asarray(labels)
    
    uniqFeatures = set(features)
    dataSet = {}
    labelSet = {}
    for feat in uniqFeatures:
        dataSet[feat] = data[features == feat]
        labelSet[feat] = labels[features == feat]
    return dataSet, labelSet
    
    
# 多数投票 
def voteLabel(labels):
    uniqLabels = list(set(labels))
    labels = np.asarray(labels)
 
    finalLabel = 0
    labelNum = []
    for label in uniqLabels:
        # 统计每个标签值得数量
        labelNum.append(equalNums(labels, label))
    # 返回数量最大的标签
    return uniqLabels[labelNum.index(max(labelNum))]
 
 
# 创建决策树
def createTree(data, labels, names, method = 'id3'):
    data = np.asarray(data)
    labels = np.asarray(labels)
    names = np.asarray(names)
    # 如果结果为单一结果
    if len(set(labels)) == 1: 
        return labels[0] 
    # 如果没有待分类特征
    elif data.size == 0: 
        return voteLabel(labels)
    # 其他情况则选取特征 
    bestFeat, bestEnt = bestFeature(data, labels, method = method)
    # 取特征名称
    bestFeatName = names[bestFeat]
    # 从特征名称列表删除已取得特征名称
    names = np.delete(names, [bestFeat])
    # 根据选取的特征名称创建树节点
    decisionTree = {bestFeatName: {}}
    # 根据最优特征进行分割
    dataSet, labelSet = splitFeatureData(data, labels, bestFeat)
    # 对最优特征的每个特征值所分的数据子集进行计算
    for featValue in dataSet.keys():
        decisionTree[bestFeatName][featValue] = createTree(dataSet.get(featValue), labelSet.get(featValue), names, method)
    return decisionTree 
 
 
# 树信息统计 叶子节点数量 和 树深度
def getTreeSize(decisionTree):
    nodeName = list(decisionTree.keys())[0]
    nodeValue = decisionTree[nodeName]
    leafNum = 0
    treeDepth = 0 
    leafDepth = 0
    for val in nodeValue.keys():
        if type(nodeValue[val]) == dict:
            leafNum += getTreeSize(nodeValue[val])[0]
            leafDepth = 1 + getTreeSize(nodeValue[val])[1] 
        else :
            leafNum += 1 
            leafDepth = 1 
        treeDepth = max(treeDepth, leafDepth)
    return leafNum, treeDepth 
 
 
# 使用模型对其他数据分类
def dtClassify(decisionTree, rowData, names):
    names = list(names)
    # 获取特征
    feature = list(decisionTree.keys())[0]
    # 决策树对于该特征的值的判断字段
    featDict = decisionTree[feature]
    # 获取特征的列
    feat = names.index(feature)
    # 获取数据该特征的值
    featVal = rowData[feat]
    # 根据特征值查找结果,如果结果是字典说明是子树,调用本函数递归
    if featVal in featDict.keys():
        if type(featDict[featVal]) == dict:
            classLabel = dtClassify(featDict[featVal], rowData, names)
        else:
            classLabel = featDict[featVal] 
    return classLabel
 

3.可视化

# 可视化 主要源自《机器学习实战》
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['figure.figsize'] = (10.0, 8.0)  # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
 
 
decisionNodeStyle = dict(boxstyle = "sawtooth", fc = "0.8")
leafNodeStyle = {"boxstyle": "round4", "fc": "0.8"}
arrowArgs = {"arrowstyle": "<-"}
 
 
# 画节点
def plotNode(nodeText, centerPt, parentPt, nodeStyle):
    createPlot.ax1.annotate(nodeText, xy = parentPt, xycoords = "axes fraction", xytext = centerPt
                            , textcoords = "axes fraction", va = "center", ha="center", bbox = nodeStyle, arrowprops = arrowArgs)
 
 
# 添加箭头上的标注文字
def plotMidText(centerPt, parentPt, lineText):
    xMid = (centerPt[0] + parentPt[0]) / 2.0
    yMid = (centerPt[1] + parentPt[1]) / 2.0 
    createPlot.ax1.text(xMid, yMid, lineText)
    
    
# 画树
def plotTree(decisionTree, parentPt, parentValue):
    # 计算宽与高
    leafNum, treeDepth = getTreeSize(decisionTree) 
    # 在 1 * 1 的范围内画图,因此分母为 1
    # 每个叶节点之间的偏移量
    plotTree.xOff = plotTree.figSize / (plotTree.totalLeaf - 1)
    # 每一层的高度偏移量
    plotTree.yOff = plotTree.figSize / plotTree.totalDepth
    # 节点名称
    nodeName = list(decisionTree.keys())[0]
    # 根节点的起止点相同,可避免画线;如果是中间节点,则从当前叶节点的位置开始,
    #      然后加上本次子树的宽度的一半,则为决策节点的横向位置
    centerPt = (plotTree.x + (leafNum - 1) * plotTree.xOff / 2.0, plotTree.y)
    # 画出该决策节点
    plotNode(nodeName, centerPt, parentPt, decisionNodeStyle)
    # 标记本节点对应父节点的属性值
    plotMidText(centerPt, parentPt, parentValue)
    # 取本节点的属性值
    treeValue = decisionTree[nodeName]
    # 下一层各节点的高度
    plotTree.y = plotTree.y - plotTree.yOff
    # 绘制下一层
    for val in treeValue.keys():
        # 如果属性值对应的是字典,说明是子树,进行递归调用; 否则则为叶子节点
        if type(treeValue[val]) == dict:
            plotTree(treeValue[val], centerPt, str(val))
        else:
            plotNode(treeValue[val], (plotTree.x, plotTree.y), centerPt, leafNodeStyle)
            plotMidText((plotTree.x, plotTree.y), centerPt, str(val))
            # 移到下一个叶子节点
            plotTree.x = plotTree.x + plotTree.xOff
    # 递归完成后返回上一层
    plotTree.y = plotTree.y + plotTree.yOff
    
    
# 画出决策树
def createPlot(decisionTree):
    fig = plt.figure(1, facecolor = "white")
    fig.clf()
    axprops = {"xticks": [], "yticks": []}
    createPlot.ax1 = plt.subplot(111, frameon = False, **axprops)
    # 定义画图的图形尺寸
    plotTree.figSize = 1.5 
    # 初始化树的总大小
    plotTree.totalLeaf, plotTree.totalDepth = getTreeSize(decisionTree)
    # 叶子节点的初始位置x 和 根节点的初始层高度y
    plotTree.x = 0 
    plotTree.y = plotTree.figSize
    plotTree(decisionTree, (plotTree.figSize / 2.0, plotTree.y), "")
    plt.show()

4.预剪枝

# 创建预剪枝决策树
def createTreePrePruning(dataTrain, labelTrain, dataTest, labelTest, names, method = 'id3'):
   
    trainData = np.asarray(dataTrain)
    labelTrain = np.asarray(labelTrain)
    testData = np.asarray(dataTest)
    labelTest = np.asarray(labelTest)
    names = np.asarray(names)
    # 如果结果为单一结果
    if len(set(labelTrain)) == 1: 
        return labelTrain[0] 
    # 如果没有待分类特征
    elif trainData.size == 0: 
        return voteLabel(labelTrain)
    # 其他情况则选取特征 
    bestFeat, bestEnt = bestFeature(dataTrain, labelTrain, method = method)
    # 取特征名称
    bestFeatName = names[bestFeat]
    # 从特征名称列表删除已取得特征名称
    names = np.delete(names, [bestFeat])
    # 根据最优特征进行分割
    dataTrainSet, labelTrainSet = splitFeatureData(dataTrain, labelTrain, bestFeat)
 
    # 预剪枝评估
    # 划分前的分类标签
    labelTrainLabelPre = voteLabel(labelTrain)
    labelTrainRatioPre = equalNums(labelTrain, labelTrainLabelPre) / labelTrain.size
    # 划分后的精度计算 
    if dataTest is not None: 
        dataTestSet, labelTestSet = splitFeatureData(dataTest, labelTest, bestFeat)
        # 划分前的测试标签正确比例
        labelTestRatioPre = equalNums(labelTest, labelTrainLabelPre) / labelTest.size
        # 划分后 每个特征值的分类标签正确的数量
        labelTrainEqNumPost = 0
        for val in labelTrainSet.keys():
            labelTrainEqNumPost += equalNums(labelTestSet.get(val), voteLabel(labelTrainSet.get(val))) + 0.0
        # 划分后 正确的比例
        labelTestRatioPost = labelTrainEqNumPost / labelTest.size 
    
    # 如果没有评估数据 但划分前的精度等于最小值0.5 则继续划分
    if dataTest is None and labelTrainRatioPre == 0.5:
        decisionTree = {bestFeatName: {}}
        for featValue in dataTrainSet.keys():
            decisionTree[bestFeatName][featValue] = createTreePrePruning(dataTrainSet.get(featValue), labelTrainSet.get(featValue)
                                      , None, None, names, method)
    elif dataTest is None:
        return labelTrainLabelPre 
    # 如果划分后的精度相比划分前的精度下降, 则直接作为叶子节点返回
    elif labelTestRatioPost < labelTestRatioPre:
        return labelTrainLabelPre
    else :
        # 根据选取的特征名称创建树节点
        decisionTree = {bestFeatName: {}}
        # 对最优特征的每个特征值所分的数据子集进行计算
        for featValue in dataTrainSet.keys():
            decisionTree[bestFeatName][featValue] = createTreePrePruning(dataTrainSet.get(featValue), labelTrainSet.get(featValue)
                                      , dataTestSet.get(featValue), labelTestSet.get(featValue)
                                      , names, method)
    return decisionTree 
# 将西瓜数据2.0分割为测试集和训练集
xgDataTrain, xgLabelTrain, xgDataTest, xgLabelTest = splitXgData20(xgData, xgLabel)
# 生成不剪枝的树
xgTreeTrain = createTree(xgDataTrain, xgLabelTrain, xgName, method = 'id3')
# 生成预剪枝的树
xgTreePrePruning = createTreePrePruning(xgDataTrain, xgLabelTrain, xgDataTest, xgLabelTest, xgName, method = 'id3')
# 画剪枝前的树
print("剪枝前的树")
createPlot(xgTreeTrain)
# 画剪枝后的树
print("剪枝后的树")
createPlot(xgTreePrePruning)

机器学习笔记(四)决策树剪枝_第11张图片

机器学习笔记(四)决策树剪枝_第12张图片 

剪枝后,减少了一些分支,降低了过拟合的风险。 

5.后剪枝

# 创建决策树 带预划分标签
def createTreeWithLabel(data, labels, names, method = 'id3'):
    data = np.asarray(data)
    labels = np.asarray(labels)
    names = np.asarray(names)
    # 如果不划分的标签为
    votedLabel = voteLabel(labels)
    # 如果结果为单一结果
    if len(set(labels)) == 1: 
        return votedLabel 
    # 如果没有待分类特征
    elif data.size == 0: 
        return votedLabel
    # 其他情况则选取特征 
    bestFeat, bestEnt = bestFeature(data, labels, method = method)
    # 取特征名称
    bestFeatName = names[bestFeat]
    # 从特征名称列表删除已取得特征名称
    names = np.delete(names, [bestFeat])
    # 根据选取的特征名称创建树节点 划分前的标签votedPreDivisionLabel=_vpdl
    decisionTree = {bestFeatName: {"_vpdl": votedLabel}}
    # 根据最优特征进行分割
    dataSet, labelSet = splitFeatureData(data, labels, bestFeat)
    # 对最优特征的每个特征值所分的数据子集进行计算
    for featValue in dataSet.keys():
        decisionTree[bestFeatName][featValue] = createTreeWithLabel(dataSet.get(featValue), labelSet.get(featValue), names, method)
    return decisionTree 
 
 
# 将带预划分标签的tree转化为常规的tree
# 函数中进行的copy操作,原因见有道笔记 【YL20190621】关于Python中字典存储修改的思考
def convertTree(labeledTree):
    labeledTreeNew = labeledTree.copy()
    nodeName = list(labeledTree.keys())[0]
    labeledTreeNew[nodeName] = labeledTree[nodeName].copy()
    for val in list(labeledTree[nodeName].keys()):
        if val == "_vpdl": 
            labeledTreeNew[nodeName].pop(val)
        elif type(labeledTree[nodeName][val]) == dict:
            labeledTreeNew[nodeName][val] = convertTree(labeledTree[nodeName][val])
    return labeledTreeNew
 
 
# 后剪枝 训练完成后决策节点进行替换评估  这里可以直接对xgTreeTrain进行操作
def treePostPruning(labeledTree, dataTest, labelTest, names):
    newTree = labeledTree.copy()
    dataTest = np.asarray(dataTest)
    labelTest = np.asarray(labelTest)
    names = np.asarray(names)
    # 取决策节点的名称 即特征的名称
    featName = list(labeledTree.keys())[0]
    # print("\n当前节点:" + featName)
    # 取特征的列
    featCol = np.argwhere(names==featName)[0][0]
    names = np.delete(names, [featCol])
    # print("当前节点划分的数据维度:" + str(names))
    # print("当前节点划分的数据:" )
    # print(dataTest)
    # print(labelTest)
    # 该特征下所有值的字典
    newTree[featName] = labeledTree[featName].copy()
    featValueDict = newTree[featName]
    featPreLabel = featValueDict.pop("_vpdl")
    # print("当前节点预划分标签:" + featPreLabel)
    # 是否为子树的标记
    subTreeFlag = 0
    # 分割测试数据 如果有数据 则进行测试或递归调用  np的array我不知道怎么判断是否None, 用is None是错的
    dataFlag = 1 if sum(dataTest.shape) > 0 else 0
    if dataFlag == 1:
        # print("当前节点有划分数据!")
        dataTestSet, labelTestSet = splitFeatureData(dataTest, labelTest, featCol)
    for featValue in featValueDict.keys():
        # print("当前节点属性 {0} 的子节点:{1}".format(featValue ,str(featValueDict[featValue])))
        if dataFlag == 1 and type(featValueDict[featValue]) == dict:
            subTreeFlag = 1 
            # 如果是子树则递归
            newTree[featName][featValue] = treePostPruning(featValueDict[featValue], dataTestSet.get(featValue), labelTestSet.get(featValue), names)
            # 如果递归后为叶子 则后续进行评估
            if type(featValueDict[featValue]) != dict:
                subTreeFlag = 0 
            
        # 如果没有数据  则转换子树
        if dataFlag == 0 and type(featValueDict[featValue]) == dict: 
            subTreeFlag = 1 
            # print("当前节点无划分数据!直接转换树:"+str(featValueDict[featValue]))
            newTree[featName][featValue] = convertTree(featValueDict[featValue])
            # print("转换结果:" + str(convertTree(featValueDict[featValue])))
    # 如果全为叶子节点, 评估需要划分前的标签,这里思考两种方法,
    #     一是,不改变原来的训练函数,评估时使用训练数据对划分前的节点标签重新打标
    #     二是,改进训练函数,在训练的同时为每个节点增加划分前的标签,这样可以保证评估时只使用测试数据,避免再次使用大量的训练数据
    #     这里考虑第二种方法 写新的函数 createTreeWithLabel,当然也可以修改createTree来添加参数实现
    if subTreeFlag == 0:
        ratioPreDivision = equalNums(labelTest, featPreLabel) / labelTest.size
        equalNum = 0
        for val in labelTestSet.keys():
            equalNum += equalNums(labelTestSet[val], featValueDict[val])
        ratioAfterDivision = equalNum / labelTest.size 
        # print("当前节点预划分标签的准确率:" + str(ratioPreDivision))
        # print("当前节点划分后的准确率:" + str(ratioAfterDivision))
        # 如果划分后的测试数据准确率低于划分前的,则划分无效,进行剪枝,即使节点等于预划分标签
        # 注意这里取的是小于,如果有需要 也可以取 小于等于
        if ratioAfterDivision < ratioPreDivision:
            newTree = featPreLabel 
    return newTree
xgTreePostPruning = treePostPruning(xgTreeTrain, xgDataTest, xgLabelTest, xgName)
createPlot(xgTreePostPruning)

机器学习笔记(四)决策树剪枝_第13张图片

机器学习笔记(四)决策树剪枝_第14张图片 

剪除多余节点后明显比预剪枝保留了更多的分支,泛化能力更强。

你可能感兴趣的:(决策树,剪枝)