相机标定张正友——棋盘格标定法

一,背景
一个是由于每个镜头的在生产和组装过程中的畸变程度各不相同,通过相机标定可以校正这种镜头畸变,生成矫正后的图像——矫正透镜畸变;
另一个是根据标定后的到的相机参数建立相机成像几何模型,由获得的图像重构出三维场景。具体来说:当我们用摄像机拍照时,从照片里得到一些空间信息(比如距离,尺寸等),是要利用二维图像得到三维信息。我们拍照的时候把空间物体信息通过摄像机变成了二维图像,这个过程本来是不可逆的。但如果我们可以找到一个摄像机的数学模型,就可以 :从二维图像+模型逆推得到原来三维信息。标定就是在找这个模型。
二、相机标定可以做什么?
1、相机在出厂之前都需要进行相机标定,用软件的方法校正生成的图像,避免拍摄出的图像产生桶形和枕形畸变;相机标定张正友——棋盘格标定法_第1张图片
2、根据相机成像的几何模型,将世界坐标系中的3D物体映射到2D成像平面上;
3、求解多个相机对之间的映射关系
三、相机标定的原理
1、四个坐标系如下:
世界坐标系(world coordinate system):用户定义的三维世界的坐标系,为了描述目标物在真实世界里的位置而被引入。单位为m。

相机坐标系(camera coordinate system):在相机上建立的坐标系,为了从相机的角度描述物体位置而定义,作为沟通世界坐标系和图像/像素坐标系的中间一环。单位为m。

图像坐标系(image coordinate system):为了描述成像过程中物体从相机坐标系到图像坐标系的投影透射关系而引入,方便进一步得到像素坐标系下的坐标。 单位为m。

像素坐标系(pixel coordinate system):为了描述物体成像后的像点在数字图像上(相片)的坐标而引入,是我们真正从相机内读取到的信息所在的坐标系。单位为个(像素数目)。
相机标定张正友——棋盘格标定法_第2张图片
2、从世界坐标系到相机坐标系 3D->3D
相机标定张正友——棋盘格标定法_第3张图片
3、其中,R为旋转矩阵,t为平移向量,因为假定在世界坐标系中物点所在平面过世界坐标系原点且与Zw轴垂直(也即棋盘平面与Xw-Yw平面重合,目的在于方便后续计算),所以zw=0,可直接转换成式1的形式。其中变换矩阵
在这里插入图片描述
在这里插入图片描述
4、即为前文提到的外参矩阵,之所称之为外参矩阵可以理解为只与相机外部参数有关,且外参矩阵随刚体位置的变化而变化。
5、从相机坐标系到理想图像坐标系(不考虑畸变) 3D->2D
相机标定张正友——棋盘格标定法_第4张图片
6在这里插入图片描述
7、这一过程进行了从三维坐标到二维坐标的转换,也即投影透视过程(用中心投影法将形体投射到投影面上,从而获得的一种较为接近视觉效果的单面投影图,也就是使我们人眼看到景物近大远小的一种成像方式)。
8、从理想图像坐标系到实际图像坐标系(考虑畸变):
9、透镜的畸变主要分为径向畸变和切向畸变(还有薄透镜畸变等等,但都没有径向和切向畸变影响显著,所以我们在这里只考虑径向和切向畸变)。径向畸变是由于透镜形状的制造工艺导致。且越向透镜边缘移动径向畸变越严重。实际情况中我们常用r=0处的泰勒级数展开的前几项来近似描述径向畸变。矫正径向畸变前后的坐标关系为:
•xcorrected = x(1+k1r2+k2r4+k3r6)

•ycorrected = y(1+k1r2+k2r4+k3r6)

由此可知对于径向畸变,我们有3个畸变参数需要求解。•xcorrected = x + [ 2p1y + p2 (r2 + 2x2) ]

•ycorrected = y + [ 2p2x + p1 (r2 + 2y2) ]

由此可知对于切向畸变,我们有2个畸变参数需要求解。
10、由于定义的像素坐标系原点与图像坐标系原点不重合,假设像素坐标系原点在图像坐标系下的坐标为(u0,v0),每个像素点在图像坐标系x轴、y轴方向的尺寸为:dx、dy,且像点在实际图像坐标系下的坐标为(xc,yc),于是可得到像点在像素坐标系下的坐标为:
在这里插入图片描述
化为齐次坐标表示形式可得:
在这里插入图片描述
若暂不考虑透镜畸变,则将式2与式5的转换矩阵相乘即为内参矩阵M:在这里插入图片描述之所以称之为内参矩阵可以理解为矩阵内各值只与相机内部参数有关,且不随物体位置变化而变化。
最后用一幅图来总结从世界坐标系到像素坐标系(不考虑畸变)的转换关系:相机标定张正友——棋盘格标定法_第5张图片相机标定张正友——棋盘格标定法_第6张图片
11、实现相机标定的方法
MATLAB(matlab calibration toolbox-Matlab标定工具箱使用(单目标定和双目标定)
OpenCV标定函数 cv::calibrateCamera(…);

四,源代码

import cv2
import numpy as np
import glob

# 设置寻找亚像素角点的参数,采用的停止准则是最大循环次数30和最大误差容限0.001
criteria = (cv2.TERM_CRITERIA_MAX_ITER | cv2.TERM_CRITERIA_EPS, 30, 0.001)

# 获取标定板角点的位置
objp = np.zeros((4 * 6, 3), np.float32)
objp[:, :2] = np.mgrid[0:6, 0:4].T.reshape(-1, 2)  # 将世界坐标系建在标定板上,所有点的Z坐标全部为0,所以只需要赋值x和y

obj_points = []  # 存储3D点
img_points = []  # 存储2D点

images = glob.glob("imagesC/*.jpg")
i=0;
for fname in images:
    img = cv2.imread(fname)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    size = gray.shape[::-1]
    ret, corners = cv2.findChessboardCorners(gray, (6, 4), None)
    #print(corners)

    if ret:

        obj_points.append(objp)

        corners2 = cv2.cornerSubPix(gray, corners, (5, 5), (-1, -1), criteria)  # 在原角点的基础上寻找亚像素角点
        #print(corners2)
        if [corners2]:
            img_points.append(corners2)
        else:
            img_points.append(corners)

        cv2.drawChessboardCorners(img, (6, 4), corners, ret)  # 记住,OpenCV的绘制函数一般无返回值
        i+=1;
        cv2.imwrite('conimg'+str(i)+'.jpg', img)
        cv2.waitKey(1500)

print(len(img_points))
cv2.destroyAllWindows()

# 标定
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, size, None, None)

print("ret:", ret)
print("mtx:\n", mtx) # 内参数矩阵
print("dist:\n", dist)  # 畸变系数   distortion cofficients = (k_1,k_2,p_1,p_2,k_3)
print("rvecs:\n", rvecs)  # 旋转向量  # 外参数
print("tvecs:\n", tvecs ) # 平移向量  # 外参数

print("-----------------------------------------------------")

img = cv2.imread(images[2])
h, w = img.shape[:2]
newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),1,(w,h))#显示更大范围的图片(正常重映射之后会删掉一部分图像)
print (newcameramtx)
print("------------------使用undistort函数-------------------")
dst = cv2.undistort(img,mtx,dist,None,newcameramtx)
x,y,w,h = roi
dst1 = dst[y:y+h,x:x+w]
cv2.imwrite('calibresult3.jpg', dst1)
print ("方法一:dst的大小为:", dst1.shape)

五、实验结果(手机为vivo iqoo拍摄)
拍了10张格子图作为素材相机标定张正友——棋盘格标定法_第7张图片
角点的提取相机标定张正友——棋盘格标定法_第8张图片
mtx为内参数矩阵,dist为畸变系数,rvecs为旋转向量,tvecs为平移向量
相机标定张正友——棋盘格标定法_第9张图片
相机标定张正友——棋盘格标定法_第10张图片
通过矫正以后的图片为相机标定张正友——棋盘格标定法_第11张图片

你可能感兴趣的:(计算机视觉)