- PyTorch生成式人工智能(18)——循环神经网络详解与实现
盼小辉丶
pytorchrnn自然语言处理
PyTorch生成式人工智能(18)——循环神经网络详解与实现0.前言1.文本生成的挑战2.循环神经网络2.1文本数据2.2循环神经网络原理3.长短期记忆网络3.自然语言处理基础3.1分词3.2词嵌入3.3词嵌入在自然语言处理中的应用小结系列链接0.前言我们已经学习了如何生成数字和图像等内容。从本节开始,我们将主要聚焦于文本生成。人类语言极其复杂且充满细微差别,不仅仅涉及语法和词汇的理解,还包括上
- 基于Paillier同态加密算法的金融数据安全共享机制研究【附数据】
金融数据分析与建模专家金融科研助手|论文指导|模型构建✨专业领域:金融数据处理与分析量化交易策略研究金融风险建模投资组合优化金融预测模型开发深度学习在金融中的应用擅长工具:Python/R/MATLAB量化分析机器学习模型构建金融时间序列分析蒙特卡洛模拟风险度量模型金融论文指导内容:金融数据挖掘与处理量化策略开发与回测投资组合构建与优化金融风险评估模型期刊论文✅具体问题可以私信或查看文章底部二维码
- 为什么用Pytorch帮客户训练好了模型还要提供模型结构?
yuanpan
pytorch人工智能机器学习
如果我在训练模型后生成好了一个模型文件:mnist_model.pth我想把这个模型文件给第三方使用,而不告诉他模型定义的结构等信息,那么第三方是不是就用不起来这个模型?答案:是的。如果只提供.pth文件而不告知模型结构,第三方确实无法直接使用该模型。原因和解决方案如下:1.为什么无法直接使用?.pth文件仅保存参数:torch.save(model.state_dict(),'mnist_mod
- YOLOv8实现手写数字识别系统:从MNIST到实时摄像头检测
在深度学习领域,手写数字识别是一个经典问题,也是入门计算机视觉的重要案例。本文将介绍一个基于YOLOv8和MNIST数据集的手写数字识别系统,该系统不仅能识别静态图像中的数字,还能通过摄像头实时检测手写数字。个人博客:YOLOv8实现手写数字识别系统:从MNIST到实时摄像头检测-iDing's博客项目概述这个项目结合了传统的MNIST数据集和现代的目标检测算法YOLOv8,实现了以下功能:将MN
- 基于深度学习的手写数字和符号识别系统:YOLOv5/v6/v7/v8/v10模型实现与UI界面集成
YOLO实战营
深度学习YOLOui人工智能目标检测计算机视觉
1.引言随着人工智能和深度学习技术的发展,手写数字和符号识别已经成为计算机视觉领域的重要研究方向。手写识别在很多实际应用中扮演着关键角色,例如邮政编码识别、表单自动处理和智能教育系统等。传统的手写识别方法通常依赖于复杂的特征工程,而深度学习则能够自动从数据中学习到特征,极大地提高了识别精度和速度。本文将介绍如何构建一个基于YOLO系列模型(YOLOv5、YOLOv6、YOLOv7、YOLOv8、Y
- autodl云计算平台 使用ollama 部署lightrag 加入streamlit界面
42fourtytoo
云计算深度学习pytorch学习
1到autodl的算力市场里开一台机器镜像选择:PyTorch2.3.0、Python3.12(ubuntu22.04)、Cuda12.1我本来选择的Cuda12.4,但版本过高疑似会使ollama不使用GPU而只用CPU,后来换个镜像就好了2下载lightrag从lightrag的GitHub界面下载zip开机,上传zip,解压到autodl-tmp/lightrag下安装依赖,在文件夹下:pi
- AI作画:AI人工智能激发艺术创作灵感
AGI大模型与大数据研究院
AI作画人工智能ai
AI作画:AI人工智能激发艺术创作灵感关键词:AI作画、生成艺术、深度学习、神经网络、艺术创作、人工智能、创意工具摘要:本文深入探讨AI作画技术如何激发艺术创作灵感。我们将从基础概念出发,解释AI如何"学习"艺术风格并生成新作品,分析核心技术原理,提供实际应用案例,并展望这一领域的未来发展趋势。通过通俗易懂的讲解和实际代码示例,帮助读者理解这项融合科技与艺术的创新技术。背景介绍目的和范围本文旨在向
- Jetson平台编译Tengine
space01
AIoTJetson人工智能深度学习计算机视觉
1.Tengine简介Tengine于2017年在GitHub(https://github.com/OAID/Tengine)开源,是OPENAILAB(开放智能)推出的自主知识产权的边缘AI计算框架,致力于解决AIoT产业链碎片化问题,加速AI产业化落地。Tengine兼容多种操作系统和深度学习算法框架,简化和加速面向场景的AI算法在嵌入式边缘设备上快速迁移,以及实际应用部署落地,可以十倍提升
- 机器人-组成结构-感知 - 决策 - 执行
具身智能-查布嘎
具身智能机器人人工智能
目录一、感知系统内部传感器:外部传感器:二、智能决策系统机器学习家族1.1机器学习2.1深度学习2.2深度学习模型(主要属于监督/强化学习范畴,但结构通用):3.1监督学习3.2监督学习模型4.1半监督学习4.2无/半监督学习模型:5.1无监督学习5.2生成模型(可属于监督/无监督):6.1强化学习7.1其他学习三、控制系统(运控)①对应小脑和脊柱一、感知系统①对应人体的五官。由具有不同功能的各种
- 深度学习篇---矩阵
Atticus-Orion
嵌入式知识篇上位机知识篇嵌入式硬件篇深度学习矩阵人工智能
在机械臂解算、深度学习网络等硬件和软件领域中,矩阵运算作为核心数学工具,承担着数据表示、变换、映射和优化的关键作用。以下从具体领域出发,详细总结涉及的矩阵运算及对应的核心知识:一、机械臂解算领域机械臂解算(运动学、动力学分析)的核心是描述“关节空间”与“操作空间”的映射关系,矩阵运算用于精准刻画坐标系转换、运动传递和力/力矩分析。1.运动学解算(正/逆运动学)核心目标:通过矩阵描述关节角度与末端执
- Python深度学习实践:LSTM与GRU在序列数据预测中的应用
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python深度学习实践:LSTM与GRU在序列数据预测中的应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来序列数据预测是机器学习领域的一个重要研究方向,涉及时间序列分析、自然语言处理、语音识别等多个领域。序列数据具有时间依赖性,即序列中每个元素都受到前面元素的影响。传统的机器学习算法难以捕捉这种时间依赖性,而深度学习
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现打架检测(C#代码,UI界面版)
格林威
工业相机机器视觉数码相机YOLO深度学习计算机视觉人工智能
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现打架检测(C#代码,UI界面版)工业相机使用YoloV8模型实现打架检测工业相机通过YoloV8模型实现打架检测的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心代码代码实现
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现人脸识别检测(C#代码,UI界面版)
格林威
机器视觉工业相机数码相机YOLO深度学习人工智能视觉检测c#
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现人脸识别检测(C#代码,UI界面版)工业相机使用YoloV8模型实现人脸的检测工业相机通过YoloV8模型实现人脸识别检测的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心代
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现人物识别(C#代码,UI界面版)
格林威
工业相机机器视觉数码相机YOLOc#人工智能计算机视觉开发语言
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现人物识别(C#代码,UI界面版)工业相机使用YoloV8模型实现人物识别工业相机实现YoloV8模型实现人物识别的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心代码代码实现
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现动物分类(C#源码,UI界面版)
格林威
机器视觉工业相机数码相机YOLO深度学习计算机视觉人工智能视觉检测c#
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现动物分类(C#源码,UI界面版))工业相机使用YoloV8模型实现动物分类工业相机实现YoloV8模型实现动物分类的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心代码代码实
- opencv、torch、torchvision、tensorflow的区别
一、框架定位与核心差异PyTorch动态计算图:实时构建计算图支持Python原生控制流(如循环/条件),调试便捷。学术主导:2025年工业部署份额24%,适合快速原型开发(如无人机自动驾驶、情绪识别)。TensorFlow静态计算图优化:预编译图结构提升部署效率支持动态图(Eager模式)兼顾灵活性。工业部署首选:市场份额38%,擅长边缘计算(YOLO部署)和大规模项目(工业自动化)-59)。O
- AI 大模型重塑软件开发流程
万花丛中一抹绿
人工智能
一、AI大模型的定义与发展历史AI大模型是基于海量数据训练的深度学习模型,具备强大的自然语言理解、逻辑推理和知识生成能力。在软件开发领域,以GPT-4、CodeLlama、GitHubCopilotX为代表的大模型,能理解代码语法、语义及业务逻辑,实现代码生成、漏洞检测等复杂任务。其发展可追溯至2017年,谷歌提出Transformer架构,为大模型奠定了核心基础。2018年,GPT-1问世,参数
- PyTorch笔记6----------神经网络案例
HuashuiMu花水木
PyTorch笔记pytorch笔记
1.回归网络波士顿房价预测模型搭建波士顿房价数据集下载链接:百度网盘请输入提取码提取码:5279导入所需包importtorchimportnumpyasnpimportre读取数据ff=open('housing.data').readlines()data=[]foriteminff:out=re.sub(r"\s{2,}","",item).strip()#通过正则表达式去除所有空格data
- 在 Conda 中删除环境及所有安装的库
Studying 开龙wu
conda
注意事项1.删除环境前确保你没有在该环境中运行任何程序。2.删除操作是不可逆的,所有该环境中的包和配置都会被永久删除。3.如果你想保留环境的配置信息,可以在删除前使用condaenvexport>environment.yml导出环境配置。关于requirements.txt和environment.yaml文件使用介绍详情可参考以往文章,争对机器学习和深度学习里Python项目开发管理项目依赖的
- OpenCV学习(二)-二维、三维识别
香蕉可乐荷包蛋
#OpenCVopencv学习人工智能
OpenCV是一个功能强大的计算机视觉库,可以用于识别和处理二维图像和三维图像。以下是关于二维图像和三维图像识别的基础知识和示例代码。1.二维图像识别二维图像识别通常包括图像分类、对象检测、特征提取等任务。以下是一些常见的操作:1.1图像分类使用预训练模型对图像进行分类,例如使用深度学习模型(如ResNet、MobileNet等)。importcv2#加载预训练的深度学习模型net=cv2.dnn
- 【AI 赋能:Python 人工智能应用实战】5. 梯度下降家族:SGD/Adam优化器对比实验与选择策略
AI_DL_CODE
人工智能python梯度下降优化器SGDAdamPyTorch
摘要:本文系统解析梯度下降优化器的核心原理与演进脉络,构建从理论到实战的完整知识体系。理论部分梳理优化器发展里程碑,从1951年的SGD到2018年的AdamW,揭示技术迭代逻辑;通过数学公式对比SGD、Momentum、Adam等核心算法的更新机制,解析动量加速、自适应学习率的创新点。结合损失曲面分析,阐释Momentum如何逃离鞍点、Adam如何处理悬崖梯度。实战模块基于PyTorch在MNI
- 【人工智能之深度学习】6. 卷积核工作原理:从边缘检测到特征抽象的逐层演进(附可视化工具与行业实战代码)
AI_DL_CODE
人工智能深度学习卷积核特征提取卷积神经网络边缘检测特征可视化
摘要:卷积核是卷积神经网络(CNN)的核心组件,其通过局部感受野与参数共享机制实现高效特征提取。本文从数学本质出发,揭示卷积操作的空域-频域对偶性:空域卷积等价于频域乘积(F{f∗g}=F{f}⋅F{g}F\{f*g\}=F\{f\}⋅F\{g\}F{f∗g}=F{f}⋅F{g}),解释边缘检测核(Sobel、Laplacian)的频域响应特性。通过特征可视化实验表明,CNN特征呈现逐层抽象规律:
- 颠覆未来:创新代码引领人工智能与量子计算深度融合
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3人工智能量子计算
摘要在信息时代飞速演进的背景下,人工智能与量子计算正以前所未有的速度互相融合,推动着科技边界的不断拓展。本文回顾了经典算法的智慧,展示了前沿深度学习模型的构建,并通过量子电路设计探讨了创新代码的可能性,为探索未来科技变革提供了全新视角。1.引言当前,科技创新正处于高速迭代的关键阶段,传统计算方法与新型技术的交汇处正成为研究热点。人工智能的发展已渗透到各行各业,而量子计算的崛起则为解决复杂计算问题提
- 使用UV管理PyTorch项目
PyTorch是深度学习研究和开发的流行选择。可以使用uv管理PyTorch项目,包括不同Python版本依赖、管理环境、甚至加速器选择等。安装Pytorch从打包角度来看,PyTorch有几个不常见的特点:许多PyTorchwheel托管在专门的索引上,而非Python包索引(PyPI)。因此,安装PyTorch通常需要配置项目使用PyTorch专属索引。PyTorch为每种加速器生成不同的构建
- AI新纪元:2025年深度学习技术突破与行业应用全景
像素笔记
杂谈人工智能深度学习ai自动驾驶工业数字化转型未来趋势技术创新
2025年,人工智能技术迎来爆发式增长,大模型、生成式AI和多模态技术持续突破,人形机器人量产元年正式开启,自动驾驶商业化进程加速,工业数字化转型全面铺开。这些进展不仅重塑了技术边界,更在多个行业创造了实际价值,推动AI从实验室走向产业化。本文将深入剖析2025年深度学习与AI领域的核心技术突破、行业应用案例及未来发展趋势,为技术从业者提供全面视角。一、深度学习核心技术突破:大模型、生成式AI与多
- 模型移植实战:从PyTorch到ONNX完整指南
慕婉0307
神经网络pytorch人工智能python
一、认识ONNXONNX(OpenNeuralNetworkExchange)是一种开放的模型表示格式,由微软和Facebook(现Meta)在2017年共同推出,旨在解决深度学习模型在不同框架之间的互操作性问题。ONNX的主要优势包括:跨框架兼容性:支持主流深度学习框架间的模型转换,包括PyTorch、TensorFlow、MXNet、CNTK等例如,可以将PyTorch训练的ResNet模型导
- PyTorch的基础概念和复杂模型的基本使用
香蕉可乐荷包蛋
AI大模型项目中的使用pytorch人工智能python
文章目录一、PyTorch基础概念二、复杂模型的学习使用一、PyTorch基础概念张量(Tensor)操作:张量是PyTorch中的基本数据结构,类似于NumPy的数组,但支持GPU加速常见操作包括创建张量、张量运算、索引、切片等importtorch#创建张量x=torch.randn(3,4)y=torch.zeros(3,4)#张量运算z=x+y自动求导(Autograd):PyTorch的
- python3.9安装tensorflow-gpu 2.6.0和torch-gpu版本各依赖包的版本对应关系
首先使用的cuDNN(8.1)、CUDA(11.2)、tensorflow-gpu(2.6.0)、python(3.9)之间对应版本Window环境下安装pytorch下载地址tensorflow官网CUDA下载官网cuDNN下载官网注意:cuDNN需要注册absl-py0.15.0astunparse1.6.3cachetools5.3.2certifi2023.7.22charset-norm
- TensorFlow GPU 2.10.1 for Python 3.9快速安装指南
疑样
本文还有配套的精品资源,点击获取简介:TensorFlowGPU2.10.1是专为Windowsx64和Python3.9设计的TensorFlow版本,它集成了GPU支持以加快深度学习模型的训练。本指南提供了该版本的概述、安装步骤及注意事项,旨在帮助开发者利用其性能优势提升机器学习项目的效率。1.TensorFlowGPU介绍1.1TensorFlow的起源与功能TensorFlow是由Goog
- 深度学习方法生成抓取位姿与6D姿态估计的完整实现
ZPC8210
ROS深度学习人工智能
如何将GraspNet等深度学习模型与6D姿态估计集成到ROS2和MoveIt中,实现高精度的机器人抓取系统。1.系统架构text[RGB-D传感器]→[物体检测与6D姿态估计]→[GraspNet抓取位姿生成]→[MoveIt运动规划]→[执行抓取]2.环境配置2.1安装依赖bash#安装PyTorch(根据CUDA版本选择)pip3installtorchtorchvisiontorchaud
- springmvc 下 freemarker页面枚举的遍历输出
杨白白
enumfreemarker
spring mvc freemarker 中遍历枚举
1枚举类型有一个本地方法叫values(),这个方法可以直接返回枚举数组。所以可以利用这个遍历。
enum
public enum BooleanEnum {
TRUE(Boolean.TRUE, "是"), FALSE(Boolean.FALSE, "否");
- 实习简要总结
byalias
工作
来白虹不知不觉中已经一个多月了,因为项目还在需求分析及项目架构阶段,自己在这段
时间都是在学习相关技术知识,现在对这段时间的工作及学习情况做一个总结:
(1)工作技能方面
大体分为两个阶段,Java Web 基础阶段和Java EE阶段
1)Java Web阶段
在这个阶段,自己主要着重学习了 JSP, Servlet, JDBC, MySQL,这些知识的核心点都过
了一遍,也
- Quartz——DateIntervalTrigger触发器
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208559 一.概述
simpleTrigger 内部实现机制是通过计算间隔时间来计算下次的执行时间,这就导致他有不适合调度的定时任务。例如我们想每天的 1:00AM 执行任务,如果使用 SimpleTrigger,间隔时间就是一天。注意这里就会有一个问题,即当有 misfired 的任务并且恢复执行时,该执行时间
- Unix快捷键
18289753290
unixUnix;快捷键;
复制,删除,粘贴:
dd:删除光标所在的行 &nbs
- 获取Android设备屏幕的相关参数
酷的飞上天空
android
包含屏幕的分辨率 以及 屏幕宽度的最大dp 高度最大dp
TextView text = (TextView)findViewById(R.id.text);
DisplayMetrics dm = new DisplayMetrics();
text.append("getResources().ge
- 要做物联网?先保护好你的数据
蓝儿唯美
数据
根据Beecham Research的说法,那些在行业中希望利用物联网的关键领域需要提供更好的安全性。
在Beecham的物联网安全威胁图谱上,展示了那些可能产生内外部攻击并且需要通过快速发展的物联网行业加以解决的关键领域。
Beecham Research的技术主管Jon Howes说:“之所以我们目前还没有看到与物联网相关的严重安全事件,是因为目前还没有在大型客户和企业应用中进行部署,也就
- Java取模(求余)运算
随便小屋
java
整数之间的取模求余运算很好求,但几乎没有遇到过对负数进行取模求余,直接看下面代码:
/**
*
* @author Logic
*
*/
public class Test {
public static void main(String[] args) {
// TODO A
- SQL注入介绍
aijuans
sql注入
二、SQL注入范例
这里我们根据用户登录页面
<form action="" > 用户名:<input type="text" name="username"><br/> 密 码:<input type="password" name="passwor
- 优雅代码风格
aoyouzi
代码
总结了几点关于优雅代码风格的描述:
代码简单:不隐藏设计者的意图,抽象干净利落,控制语句直截了当。
接口清晰:类型接口表现力直白,字面表达含义,API 相互呼应以增强可测试性。
依赖项少:依赖关系越少越好,依赖少证明内聚程度高,低耦合利于自动测试,便于重构。
没有重复:重复代码意味着某些概念或想法没有在代码中良好的体现,及时重构消除重复。
战术分层:代码分层清晰,隔离明确,
- 布尔数组
百合不是茶
java布尔数组
androi中提到了布尔数组;
布尔数组默认的是false, 并且只会打印false或者是true
布尔数组的例子; 根据字符数组创建布尔数组
char[] c = {'p','u','b','l','i','c'};
//根据字符数组的长度创建布尔数组的个数
boolean[] b = new bool
- web.xml之welcome-file-list、error-page
bijian1013
javaweb.xmlservleterror-page
welcome-file-list
1.定义:
<welcome-file-list>
<welcome-file>login.jsp</welcome>
</welcome-file-list>
2.作用:用来指定WEB应用首页名称。
error-page1.定义:
<error-page&g
- richfaces 4 fileUpload组件删除上传的文件
sunjing
clearRichfaces 4fileupload
页面代码
<h:form id="fileForm"> <rich:
- 技术文章备忘
bit1129
技术文章
Zookeeper
http://wenku.baidu.com/view/bab171ffaef8941ea76e05b8.html
http://wenku.baidu.com/link?url=8thAIwFTnPh2KL2b0p1V7XSgmF9ZEFgw4V_MkIpA9j8BX2rDQMPgK5l3wcs9oBTxeekOnm5P3BK8c6K2DWynq9nfUCkRlTt9uV
- org.hibernate.hql.ast.QuerySyntaxException: unexpected token: on near line 1解决方案
白糖_
Hibernate
文章摘自:http://blog.csdn.net/yangwawa19870921/article/details/7553181
在编写HQL时,可能会出现这种代码:
select a.name,b.age from TableA a left join TableB b on a.id=b.id
如果这是HQL,那么这段代码就是错误的,因为HQL不支持
- sqlserver按照字段内容进行排序
bozch
按照内容排序
在做项目的时候,遇到了这样的一个需求:
从数据库中取出的数据集,首先要将某个数据或者多个数据按照地段内容放到前面显示,例如:从学生表中取出姓李的放到数据集的前面;
select * fro
- 编程珠玑-第一章-位图排序
bylijinnan
java编程珠玑
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Random;
public class BitMapSearch {
- Java关于==和equals
chenbowen00
java
关于==和equals概念其实很简单,一个是比较内存地址是否相同,一个比较的是值内容是否相同。虽然理解上不难,但是有时存在一些理解误区,如下情况:
1、
String a = "aaa";
a=="aaa";
==> true
2、
new String("aaa")==new String("aaa
- [IT与资本]软件行业需对外界投资热情保持警惕
comsci
it
我还是那个看法,软件行业需要增强内生动力,尽量依靠自有资金和营业收入来进行经营,避免在资本市场上经受各种不同类型的风险,为企业自主研发核心技术和产品提供稳定,温和的外部环境...
如果我们在自己尚未掌握核心技术之前,企图依靠上市来筹集资金,然后使劲往某个领域砸钱,然
- oracle 数据块结构
daizj
oracle块数据块块结构行目录
oracle 数据块是数据库存储的最小单位,一般为操作系统块的N倍。其结构为:
块头--〉空行--〉数据,其实际为纵行结构。
块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。同一数据库中,Oracle9i及以上版本支持同一数据库中同时使用标
- github上一些觉得对自己工作有用的项目收集
dengkane
github
github上一些觉得对自己工作有用的项目收集
技能类
markdown语法中文说明
回到顶部
全文检索
elasticsearch
bigdesk elasticsearch管理插件
回到顶部
nosql
mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用
C
- 初二上学期难记单词二
dcj3sjt126com
englishword
dangerous 危险的
panda 熊猫
lion 狮子
elephant 象
monkey 猴子
tiger 老虎
deer 鹿
snake 蛇
rabbit 兔子
duck 鸭
horse 马
forest 森林
fall 跌倒;落下
climb 爬;攀登
finish 完成;结束
cinema 电影院;电影
seafood 海鲜;海产食品
bank 银行
- 8、mysql外键(FOREIGN KEY)的简单使用
dcj3sjt126com
mysql
一、基本概念
1、MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种。不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引。用于外键关系的字段必须在所有的参照表中进行明确地索引,InnoDB不能自动地创建索引。
2、外键可以是一对一的,一个表的记录只能与另一个表的一条记录连接,或者是一对多的,一个表的记录与另一个表的多条记录连接。
3、如
- java循环标签 Foreach
shuizhaosi888
标签java循环foreach
1. 简单的for循环
public static void main(String[] args) {
for (int i = 1, y = i + 10; i < 5 && y < 12; i++, y = i * 2) {
System.err.println("i=" + i + " y="
- Spring Security(05)——异常信息本地化
234390216
exceptionSpring Security异常信息本地化
异常信息本地化
Spring Security支持将展现给终端用户看的异常信息本地化,这些信息包括认证失败、访问被拒绝等。而对于展现给开发者看的异常信息和日志信息(如配置错误)则是不能够进行本地化的,它们是以英文硬编码在Spring Security的代码中的。在Spring-Security-core-x
- DUBBO架构服务端告警Failed to send message Response
javamingtingzhao
架构DUBBO
废话不多说,警告日志如下,不知道有哪位遇到过,此异常在服务端抛出(服务器启动第一次运行会有这个警告),后续运行没问题,找了好久真心不知道哪里错了。
WARN 2015-07-18 22:31:15,272 com.alibaba.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(84)
- JS中Date对象中几个用法
leeqq
JavaScriptDate最后一天
近来工作中遇到这样的两个需求
1. 给个Date对象,找出该时间所在月的第一天和最后一天
2. 给个Date对象,找出该时间所在周的第一天和最后一天
需求1中的找月第一天很简单,我记得api中有setDate方法可以使用
使用setDate方法前,先看看getDate
var date = new Date();
console.log(date);
// Sat J
- MFC中使用ado技术操作数据库
你不认识的休道人
sqlmfc
1.在stdafx.h中导入ado动态链接库
#import"C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF","end")2.在CTestApp文件的InitInstance()函数中domodal之前写::CoIniti
- Android Studio加速
rensanning
android studio
Android Studio慢、吃内存!启动时后会立即通过Gradle来sync & build工程。
(1)设置Android Studio
a) 禁用插件
File -> Settings... Plugins 去掉一些没有用的插件。
比如:Git Integration、GitHub、Google Cloud Testing、Google Cloud
- 各数据库的批量Update操作
tomcat_oracle
javaoraclesqlmysqlsqlite
MyBatis的update元素的用法与insert元素基本相同,因此本篇不打算重复了。本篇仅记录批量update操作的
sql语句,懂得SQL语句,那么MyBatis部分的操作就简单了。 注意:下列批量更新语句都是作为一个事务整体执行,要不全部成功,要不全部回滚。
MSSQL的SQL语句
WITH R AS(
SELECT 'John' as name, 18 as
- html禁止清除input文本输入缓存
xp9802
input
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off"; eg: <input type="text" autocomplete="off" name