深度学习之格式转换笔记(二):CKPT 转换成 PB格式文件

我们使用tf.train.saver()保存模型时会产生多个文件,也就是说把计算图的结构和图上参数取值分成了不同的文件存储。这也是在tensorflow中常用的保存方式。

保存文件的代码:

import tensorflow as tf
# 声明两个变量
v1 = tf.Variable(tf.random_normal([1, 2]), name="v1")
v2 = tf.Variable(tf.random_normal([2, 3]), name="v2")
init_op = tf.global_variables_initializer() # 初始化全部变量
saver = tf.train.Saver() # 声明tf.train.Saver类用于保存模型
with tf.Session() as sess:
    sess.run(init_op)
    print("v1:", sess.run(v1)) # 打印v1、v2的值一会读取之后对比
    print("v2:", sess.run(v2))
    saver_path = saver.save(sess, "save/model.ckpt-510")  # 将模型保存到save/model.ckpt-510文件
    print("Model saved in file:", saver_path)

这时候我们就可以看到结果
深度学习之格式转换笔记(二):CKPT 转换成 PB格式文件_第1张图片
其中

  • checkpoint:检查点文件,文件保存了一个目录下所有的模型文件列表;
  • model.ckpt-510.meta:保存了TensorFlow计算图的结构,可以理解为神经网络的网络结构,该文件可以被
    tf.train.import_meta_graph 加载到当前默认的图来使用。
  • ckpt-510.data : 保存模型中每个变量的取值
  • ckpt-510.index:可能是内部需要的某种索引来正确映射前两个文件,它通常不是必需的

真正部署的时候,一般人家不会给你ckpt模型的,而是固化成pb模型以后再给你用,现在我们就来看看怎么将ckpt固化成pb模型。

实际完整代码:

# -*-coding: utf-8 -*-
import os
import tensorflow as tf
from create_tf_record import *
from tensorflow.python.framework import graph_util

resize_height = 299  # 指定图片高度
resize_width = 299  # 指定图片宽度
depths = 3


def freeze_graph_test(pb_path, image_path):
    '''
    :param pb_path:pb文件的路径
    :param image_path:测试图片的路径
    :return:
    '''
    with tf.Graph().as_default():
        output_graph_def = tf.GraphDef()
        with open(pb_path, "rb") as f:
            output_graph_def.ParseFromString(f.read())
            tf.import_graph_def(output_graph_def, name="")
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())

            # 定义输入的张量名称,对应网络结构的输入张量,往往是通过tf.placeholder调用的。
            # input:0作为输入图像,keep_prob:0作为dropout的参数,测试时值为1,is_training:0训练参数
            input_image_tensor = sess.graph.get_tensor_by_name("input:0")
            input_keep_prob_tensor = sess.graph.get_tensor_by_name("keep_prob:0")
            input_is_training_tensor = sess.graph.get_tensor_by_name("is_training:0")

            # 定义输出的张量名称
            output_tensor_name = sess.graph.get_tensor_by_name("InceptionV3/Logits/SpatialSqueeze:0")

            # 读取测试图片
            im = read_image(image_path, resize_height, resize_width, normalization=True)
            im = im[np.newaxis, :]
            # 测试读出来的模型是否正确,注意这里传入的是输出和输入节点的tensor的名字,不是操作节点的名字
            # out=sess.run("InceptionV3/Logits/SpatialSqueeze:0", feed_dict={'input:0': im,'keep_prob:0':1.0,'is_training:0':False})
            out = sess.run(output_tensor_name, feed_dict={input_image_tensor: im,
                                                          input_keep_prob_tensor: 1.0,
                                                          input_is_training_tensor: False})
            print("out:{}".format(out))
            score = tf.nn.softmax(out, name='pre')
            class_id = tf.argmax(score, 1)
            print(
            "pre class_id:{}".format(sess.run(class_id)))


def freeze_graph(input_checkpoint, output_graph):
    '''
    :param input_checkpoint:
    :param output_graph: PB模型保存路径
    :return:
    '''
    # checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
    # input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径

    # 指定输出的节点名称,该节点名称必须是原模型中存在的节点
    output_node_names = "InceptionV3/Logits/SpatialSqueeze"
    saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True)

    with tf.Session() as sess:
        saver.restore(sess, input_checkpoint)  # 恢复图并得到数据
        output_graph_def = graph_util.convert_variables_to_constants(  # 模型持久化,将变量值固定
            sess=sess,
            input_graph_def=sess.graph_def,  # 等于:sess.graph_def
            output_node_names=output_node_names.split(","))  # 如果有多个输出节点,以逗号隔开

        with tf.gfile.GFile(output_graph, "wb") as f:  # 保存模型
            f.write(output_graph_def.SerializeToString())  # 序列化输出
        print("%d ops in the final graph." % len(output_graph_def.node))  # 得到当前图有几个操作节点

        # for op in sess.graph.get_operations():
        #     print(op.name, op.values())


def freeze_graph2(input_checkpoint, output_graph):
    '''
    :param input_checkpoint:
    :param output_graph: PB模型保存路径
    :return:
    '''
    # checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
    # input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径

    # 指定输出的节点名称,该节点名称必须是原模型中存在的节点
    output_node_names = "InceptionV3/Logits/SpatialSqueeze"
    saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True)
    graph = tf.get_default_graph()  # 获得默认的图
    input_graph_def = graph.as_graph_def()  # 返回一个序列化的图代表当前的图

    with tf.Session() as sess:
        saver.restore(sess, input_checkpoint)  # 恢复图并得到数据
        output_graph_def = graph_util.convert_variables_to_constants(  # 模型持久化,将变量值固定
            sess=sess,
            input_graph_def=input_graph_def,  # 等于:sess.graph_def
            output_node_names=output_node_names.split(","))  # 如果有多个输出节点,以逗号隔开

        with tf.gfile.GFile(output_graph, "wb") as f:  # 保存模型
            f.write(output_graph_def.SerializeToString())  # 序列化输出
        print("%d ops in the final graph." % len(output_graph_def.node))  # 得到当前图有几个操作节点

        # for op in graph.get_operations():
        #     print(op.name, op.values())


if __name__ == '__main__':
    # 输入ckpt模型路径
    input_checkpoint = 'D:/pycharm/CarPlateIdentity-master/carIdentityData/model1/char_recongnize/model.ckpt-510'
    # 输出pb模型的路径
    out_dirpath = 'D:/pycharm/CarPlateIdentity-master/carIdentityData/model1/char_recongnize/pb/'
    os.makedirs(os.path.dirname(out_dirpath),exist_ok=True)
    out_pb_path = out_dirpath+"frozen_model.pb"
    # 调用freeze_graph将ckpt转为pb
    freeze_graph(input_checkpoint, out_pb_path)
    print("the success cover")
    # 测试pb模型
    # image_path = 'test_image/animal.jpg'
    # freeze_graph_test(pb_path=out_pb_path, image_path=image_path)

在将ckpt转换为pd过程中,会依据输出节点来丢弃那些与输出节点无关的参数,只保留与输出节点存在上下文关系的参数,这也就是生成pd文件的意义所在,即通过减少参数量降低模型的大小,所以在生成pd的过程中需要明确指定输出节点是谁,这样才能确定其依赖的需要固化的上下文参数。

你可能感兴趣的:(深度学习,python,tensorflow,深度学习)