- 【无人机三维路径规划】基于粒子群算法无人机山地三维路径规划含Matlab源码
天天Matlab科研工作室
Matlab各类代码matlab
1简介1无人机路径规划环境建模本文研究在已知环境下的无人机的全局路径规划,建立模拟城市环境的三维高程数字地图模型。考虑无人机飞行安全裕度后用圆柱体模拟建筑物,用半球体模拟其他树木等障碍及禁飞区,其三维高程数学模型表示为[10,10]:2适应度函数在采用粒子群算法进行路径规划时,适应度函数用以评价生成路径的优劣程度,也是算法种群迭代进化的依据,适应度函数的优劣决定着算法执行的效率与质量。为了更好地进
- 【无人机三维路径规划】基于蛾群算法MSA实现复杂城市地形下无人机避障三维航迹规划
天天科研工作室
无人机路径规划无人机无人机三维路径规划MATLABMSA
【无人机三维路径规划】基于蛾群算法MSA实现复杂城市地形下无人机避障三维航迹规划文章目录【无人机三维路径规划】基于蛾群算法MSA实现复杂城市地形下无人机避障三维航迹规划文章介绍优势基本步骤辅助函数代码分享参考资料文章介绍基于蛾群算法(MothSwarmAlgorithm,MSA)实现复杂城市地形下无人机避障三维航迹规划是指利用蛾群算法这种元启发式优化算法来解决无人机在复杂城市环境中进行航行时的避障
- 【SWO三维路径规划】基于matlab蜘蛛蜂算法SWO复杂山地环境下无人机三维路径规划【含Matlab源码 3576期】
Matlab研究室
matlab
欢迎来到Matlab研究室博客之家✅博主简介:985研究生,热爱科研的Matlab仿真开发者,完整代码论文复现程序定制期刊写作科研合作扫描文章底部QQ二维码。个人主页:Matlab研究室代码获取方式:扫描文章底部QQ二维码⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。更多Matlab路径规划仿真内容点击①Matlab路径规划(研究室版
- C++学习:STL初识
DesolateGIS
c++学习开发语言
一、基本概念STL广义上分为:容器、算法、迭代器容器和算法通过迭代器进行连接。STL分为六大组件:容器、算法、迭代器、仿函数、适配器、空间配置器。STL容器就是将运用广泛的一些数据结构实现出来,常用的数据结构有:数组、链表、树、栈、队列、集合、映射等容器容器分为序列式容器和关联式容器。序列式容器:强调排序,容器内的每个元素都有固定的位置关联式容器:二叉树结构,个元素之间没有严格的物理顺序关系例如:
- 基于混合蝴蝶粒子群算法 粒子群算法 蝴蝶算法实现无人机复杂山地环境下航迹规划附matlab代码
机器学习之心
路径规划算法无人机matlab
一、引言1.1、研究背景和意义无人机(UnmannedAerialVehicle,UAV)技术在过去几十年中取得了显著进展,其在军事侦察、灾害救援、物流运输、地理测绘等领域的应用日益广泛。路径规划作为无人机自主飞行的核心技术之一,对于提高无人机的飞行效率和任务执行能力具有至关重要的意义。特别是在复杂山地环境中,合理的路径规划不仅能确保飞行安全,还能有效延长无人机的飞行时间和提升任务完成的成功率。无
- 一致性哈希HashRing
留白1108
哈希算法算法一致性哈希
一致性哈希HashRing一致性哈希算法是一种高效的分布式存储和负载均衡技术,广泛应用于分布式系统中,如缓存集群、分布式数据库等。它通过将数据和节点映射到一个环形的哈希空间,实现了数据的均匀分布和节点的动态扩展。本文将详细介绍一致性哈希算法的原理,并通过一个完整的Java实现来展示其应用。一、一致性哈希算法原理一致性哈希算法的核心思想是将数据和节点映射到一个环形的哈希空间中。具体步骤如下:1.哈希
- 【神经网络】python实现神经网络(一)——数据集获取
师兄师兄怎么办
机器学习算法python神经网络python人工智能手写数字识别深度学习机器学习
一.概述在文章【机器学习】一个例子带你了解神经网络是什么中,我们大致了解神经网络的正向信息传导、反向传导以及学习过程的大致流程,现在我们正式开始进行代码的实现,首先我们来实现第一步的运算过程模拟讲解:正向传导。本次代码实现将以“手写数字识别”为例子。二.测试训练数据集的获取首先我们需要通过官网获取到手写数字识别数据集,数据集一共分为四个部分,分别是训练集的图片(六万张)、训练集的标签、测试集的图片
- 基于一致性哈希的分布式Top-K
留白1108
哈希算法分布式算法TopK
基于一致性哈希的分布式Top-K在分布式系统中,数据的高效存储和快速查询是一个常见的挑战。一致性哈希(ConsistentHashing)是一种常用于分布式存储和负载均衡的技术,而Top-K查询则是数据分析中的经典问题。本文将通过一个Java实现的案例,展示如何结合一致性哈希和多线程技术,高效地完成分布式环境下的Top-K计算。实现思路一致性哈希分片:将数据通过一致性哈希算法分配到不同节点。局部T
- Deepseek r1回答:人工智能的本质是什么? 给人类社会带来的意义是什么? 相比于之前的互联网革命,这一轮的人工智能革命的特点和异同点有哪些?
强化学习曾小健
Deepseek原理与使用人工智能
嗯,用户问的是人工智能的本质、对社会的意义,以及和互联网革命的比较。首先得拆解这三个问题,逐个分析。用户可能对AI有一定了解,但想深入理解其核心和影响。可能需要从技术、社会、历史角度切入。先想AI的本质。本质是什么?是模拟人类智能,还是数据处理?可能需要提到机器学习、深度学习,尤其是神经网络。但本质可能更深层,比如自主决策、模式识别。还要区分弱AI和强AI,现在都是弱AI,专注于特定任务。然后是意
- leetcode刷题Day4|寻找两个正序数组的中位数
我要学土木
leetcode刷题leetcode算法数据结构
leetcode刷题Day4|寻找两个正序数组的中位数给定两个大小分别为m和n的正序(从小到大)数组nums1和nums2。请你找出并返回这两个正序数组的中位数。算法的时间复杂度应该为O(log(m+n))。题解:classSolution{public:doublefindMedianSortedArrays(vector&nums1,vector&nums2){intn=nums1.size(
- 转换器与预估器,KNN算法,朴素贝叶斯算法,决策树,随机森林的特点,优缺点
qq_43625764
笔记KNN算法随机森林朴素贝叶斯算法机器学习算法决策树
转换器与预估器,KNN算法,朴素贝叶斯算法,决策树,随机森林的特点,优缺点1转换器与预估器实例化转换器fit_transform转换实例化预估器fit将训练集的特征值和目标值传进来fit运行完后,已经把这个模型训练出来了2KNN算法根据你的邻居来推测你的类别,如何确定谁是你的邻居(用距离公式,最常用的是欧式距离)还有曼哈顿距离–求绝对值,明可夫斯基距离(欧式距离和曼哈顿距离的一个退p=1曼哈顿距离
- (Pytorch)动手学深度学习:基础内容(持续更新)
孔表表uuu
神经网络深度学习pytorch人工智能
深度学习前言环境安装(Windows)安装anaconda使用conda或miniconda创建环境下载所需的包下载代码并执行(课件代码)关于线性代数内积(数量积、点乘)外积关于数据操作X.sum(0,keepdim=True)和X.sum(1,keepdim=True)广播机制(broadcast)Softmax函数和交叉熵损失函数Softmax函数交叉熵损失函数感知机多层感知机前言之前看吴恩达
- 决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost 和 LightGBM算法的R语言实现
生信与基因组学
生信分析项目进阶技能合集算法机器学习r语言
基本逻辑(1)使用rnorm函数生成5个特征变量x1到x5,并根据这些特征变量的线性组合生成一个二分类的响应变量y;(2)将生成的数据存储在数据框中,处理缺失值,并将响应变量转换为因子类型;(3)使用决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost和LightGBM六种机器学习模型算法对数据进行训练和评估;(4)将各个模型的准确率和AUC值存储在结果数据框中,并通过柱状图展示结果。1.R包
- C语言经典算法案例(一)
xinxiyinhe
C语言算法实现C语言算法
以下是10个C语言经典算法案例,包含完整可运行的代码示例、开发环境配置说明及系统要求。所有代码均基于标准C语法,可在主流编译器中运行。开发环境配置编译器:GCC(推荐)/Clang/MSVCWindows:安装MinGW或VisualStudioLinux:sudoapt-getinstallgccmacOS:安装XcodeCommandLineToolsIDE(可选):VisualStudioC
- AI芯片概述-分类、应用、技术(APU、CPU、DPU、GPU、NPU和TPU)及厂家
一码当前
AI基础人工智能分类数据挖掘
写这篇文章的起因是老板想了解下AI芯片(NPU/GPU区别等),他不是搞技术那一挂的,所以就简单整理下,留作记录,顺便分享给各位。文章目录一、AI芯片是什么?二、AI芯片分类1.Training(训练)2.Inference(推理)三、AI芯片应用领域四、AI芯片技术路线五、APU、CPU、DPU、GPU、NPU和TPU六、AI芯片厂家一、AI芯片是什么?AI芯片:针对人工智能算法做了特殊加速设计
- 解决Python中加载sklearn加州房价数据集出错的问题
冰雪之境
pythonsklearn开发语言Python
解决Python中加载sklearn加州房价数据集出错的问题在使用Python的scikit-learn库进行机器学习任务时,我们经常需要加载各种数据集。其中,加州房价数据集是一个常用的示例数据集之一,用于回归问题的训练和测试。然而,有时在加载加州房价数据集时可能会遇到HTTP错误的问题,具体表现为"HTTPError:HTTPError:Forbidden"。本文将介绍如何解决这个问题,并提供相
- 《探秘课程蒸馏体系“三阶训练法”:解锁知识层级递进式迁移的密码》
人工智能深度学习
在人工智能与教育科技深度融合的时代,如何高效地实现知识传递与能力提升,成为众多学者、教育工作者以及技术专家共同探索的课题。课程蒸馏体系中的“三阶训练法”,作为一种创新的知识迁移模式,正逐渐崭露头角,为解决这一难题提供了全新的思路。从概念上讲,课程蒸馏体系借鉴了机器学习中知识蒸馏的思想,将复杂、庞大的知识体系进行提炼和压缩,使其能够更有效地被学习者吸收。而“三阶训练法”作为该体系的核心,通过精心设计
- C语言实现算法(三)
xinxiyinhe
C语言算法实现c语言算法开发语言
以下是"10个不重复的C语言经典算法案例",结合多个搜索结果整理而成,涵盖数学计算、字符串处理、数据结构等方向,提供可运行代码及开发环境说明:开发环境配置编译器:GCC(推荐)Windows:安装MinGW或VisualStudioLinux:sudoapt-getinstallgccmacOS:通过XcodeCommandLineTools安装IDE:VisualStudioCode(推荐)+C
- C++11新特性 6.lambda表达式
HHRL-yx
C++11新特性c++开发语言
目录一.简介1.基本概念2.语法二.使用示例示例1:基础用法示例2:带参数和返回值示例3:捕获外部变量示例4:修改值捕获的值(mutable关键字)示例5:在STL算法中使用(常用)三.注意事项四.补充一.简介1.基本概念Lambda表达式是C++11引入的一种匿名函数的实现形式,能让你在代码中方便、快速地定义小型临时函数,尤其在需要简洁表达式、回调函数或函数对象时。Lambda表达式实质上是匿名
- C语言SM2算法实现(基于GMSSL)
深度视觉机器
C语言
最近项目中需要通过C语言实现SM2、SM4国密算法,这里我基于GMSSL来进行实现,已在5种环境下实现,并已使用在生产环境中。1、GMSSL编译GMSSL编译在不同环境下都不一样,这里我提供Window64、Arm64、Linux64、Android、himix200海思芯片环境编译方法,传送门如下:Gmssl官网地址Gmssl各平台编译方法【绝对可用】如果各位都是比较懒得人,我这里也给各位提供上
- 深入探究 ES6 数组扩展:扩展运算符的神奇应用与实战
疯狂的沙粒
ES6系列专栏es6前端javascript
ES6(ECMAScript2015)对数组提供了许多扩展,使得数组的操作更加便捷和高效。以下是对ES6中数组扩展的详细讲解,结合了扩展运算符、构造函数新增方法、实例对象新增方法、空值处理、以及sort()排序算法的稳定性。1.扩展运算符(SpreadOperator)1.1扩展运算符的基本使用扩展运算符(...)可以快速复制数组的元素,或者将数组的元素传递给其他函数。它简化了数组的复制和合并等操
- 后端开发如何提高项目系统的性能
云计算课代表
日常运维问题合集运维服务器centoslinux
引言提高后端PHP开发系统的性能可以从多个维度进行,例如通过代码优化、缓存优化、数据库优化、异步处理和消息队列、服务器优化、内容分发网络(CDN)的应用以及系统安全性的强化。本文主要介绍如何通过以上方法对系统进行优化,提高项目的性能。代码优化主要涉及代码重构、算法优化、代码维护和更新。代码重构主要是指在原有代码的基础上,对代码的结构和逻辑进行简化,以提高代码的可读性、可维护性和执行效率。在这个过程
- 智能教育:DeepSeek在个性化学习中的应用与代码实现
Evaporator Core
#DeepSeek快速入门#深度学习人工智能学习
个性化学习是教育技术领域的核心目标之一,它通过分析学生的学习行为、兴趣和能力,提供定制化的学习内容和路径,以最大化学习效果。DeepSeek作为人工智能技术的引领者,正在通过其强大的算法和数据处理能力,推动个性化学习的创新应用。本文将结合代码实现,深入探讨DeepSeek在个性化学习中的应用。一、个性化学习系统:从数据到定制化内容个性化学习的核心在于根据学生的学习行为数据,生成定制化的学习内容。D
- GitHub每日最火火火项目(3.7)
FutureUniant
github日推github人工智能计算机视觉音视频ai
ai-hedge-fund项目介绍:ai-hedge-fund是由virattt开发的项目,本质上是一个将人工智能技术应用于对冲基金领域的团队或平台。在金融市场中,对冲基金旨在通过各种策略获取超额收益,而人工智能具备强大的数据分析和预测能力,二者结合能为投资决策带来新的思路和方法。该项目可能运用机器学习、深度学习等人工智能算法,对大量的金融数据进行深入分析,包括股票、债券、期货等市场的历史价格、交
- C++之序列容器(vector,list,dueqe)
邪恶的贝利亚
c++语言特性c++开发语言
1.大体对比在软件开发的漫长历程中,数据结构与算法始终占据着核心地位,犹如大厦的基石,稳固支撑着整个程序的运行。在众多编程语言中,数据的存储与管理方式各有千秋,而C++凭借其丰富且强大的工具集脱颖而出,尤其是在处理序列数据方面,C++标准模板库(STL)中的序列容器vector、list和deque更是展现出卓越的性能与高度的灵活性。和一些编程语言中单一的数据存储方式相比,C++这三种序列容器的存
- 原生开发短剧APP对接穿山甲联盟同步剧库对标红果短剧
+V:RF98632
短剧源码
穿山甲短剧APP项目展示:GitCode-全球开发者的开源社区,开源代码托管平台穿山甲广告联盟变现平台是字节跳动旗下的广告平台,致力于帮助开发者实现流量变现。以下是短剧APP穿山甲广告联盟变现平台系统开发搭建的功能介绍:一、核心功能智能匹配系统:穿山甲平台采用先进的算法,根据短剧的内容、风格和受众群体智能匹配适合的广告,确保广告与内容的相关性和吸引力,提升用户体验和广告效果。多样化的广告形式:平台
- Jetson系列: tensorrt-python推理yolov5(一)
weixin_55083979
jetson系列YOLOpytorch深度学习
目录一.onnx模型导出二.TensorRT模型本地序列化三.算法整体Pipline架构四.算法整体Pipline实现一.onnx模型导出在使用tensorrt进行加速之前需要将自己的torch模型转为onnx格式的,这个操作很基础就不赘述了,自己根据自己的任务、部署设备选择合适的batch/infersize/opsetyolov5官方导出onnx脚本Example:```pythonfromp
- java本地缓存组件之caffeine为什么是性能之王?
rider189
java开发语言
读者专属福利:零基础java自学视频,从入门到精通1.基于Window-TinyLFU的淘汰算法Caffeine采用Window-TinyLFU(WindowedTinyLeastFrequentlyUsed)算法,结合了LRU(最近最少使用)和LFU(最不经常使用)的优势,解决了传统算法的缺陷:窗口缓存(WindowCache):保留最近访问的少量条目(类似LRU),用于捕捉突发性短期热点数据。
- 【AI-42】如何调整参数和超参
W Y
人工智能
在机器学习和深度学习中,参数和超参数是两个重要概念,以下是一些常见的参数和超参数及其作用:参数权重(Weight)解释:可以将权重想象成连接不同神经元之间的“桥梁”,其大小决定了一个神经元的输出对下一个神经元的影响程度。权重越大,说明前一个神经元对后一个神经元的影响就越大;权重越小,影响就越小。作用:在模型训练过程中,权重不断调整,使得模型能够学习到输入数据中的各种特征和模式,从而实现对数据的准确
- 华为OD机试-构成指定长度字符串的个数(Java 2024 E卷 100分)
蓝白咖啡
华为OD机试华为OD机试算法JavePythonC++JavaScript
题目描述给定M个字符(a-z),从中取出任意字符(每个字符只能用一次)拼接成长度为N的字符串,要求相同的字符不能相邻。计算出给定的字符列表能拼接出多少种满足条件的字符串。如果输入非法或者无法拼接出满足条件的字符串,则返回0。输入描述给定长度为M的字符列表和结果字符串的长度N,中间使用空格分隔。0
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin