循环神经网络让神经网络有了记忆, 对于序列话的数据,循环神经网络能达到更好的效果.
import torch
from torch import nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
torch.manual_seed(1)
# Hyper Parameters
EPOCH = 1 # 训练整批数据多少次,为了节省时间,只训练一次
BATCH_SIZE = 64
TIME_STEP = 28 # run 时间步骤/图片高度
INPUT_SIZE = 28 # run 每步输入值/图片的每行像素
LR = 0.01 # Learning rate
DOWNLOAD_MNIST = False
## MNIST 数据集
train_data = dsets.MNIST(
root='./mnist/', # 保存数据的位置
train=True, # this is training data
transform = transforms.ToTensor() , # 转换成 PIL.Image or numpy.ndarray 成 torch.FloatTensor (C * H * W),
# 训练的时候normalize 成 [0.0, 1.0]区间
download = DOWNLOAD_MNIST,
)
print(train_data.train_data.size()) # (60000, 28, 28)
print(train_data.train_labels.size()) # (60000)
plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
plt.title('%i' % train_data.train_labels[0])
plt.show()
# 批训练 50 samples, 1 channel, 28*28(50,1, 28,28)
train_loader = torch.utils.data.DataLoader(dataset= train_data, batch_size= BATCH_SIZE, shuffle= True)
# 准备测试数据
# shape from (2000, 28,28) to (2000,1,28,28), value in range (0,1)
test_data = dsets.MNIST(root='./mnist/', train = False, transform=transforms.ToTensor())
test_x = test_data.test_data.type(torch.FloatTensor)[:2000]/255. # shape (2000, 28, 28) value in range(0,1)
test_y = test_data.test_labels.numpy()[:2000] # covert to numpy array
## RNN 模型
class RNN(nn.Module):
def __init__(self):
super(RNN, self).__init__()
self.rnn = nn.LSTM( # LSTM 效果要比 nn.RNN() 好多了
input_size=INPUT_SIZE, # 图片每行的数据像素点
hidden_size=64, # rnn hidden unit
num_layers=2, # 有2层 RNN layers
batch_first=True, # input & output 会是以 batch size 为第一维度的特征集 e.g. (batch, time_step, input_size)
)
self.out = nn.Linear(64, 10) # 输出层
def forward(self, x):
# x shape (batch, time_step, input_size)
# r_out shape (batch, time_step, output_size)
# h_n shape (n_layers, batch, hidden_size) LSTM 有两个 hidden states, h_n 是分线, h_c 是主线
# h_c shape (n_layers, batch, hidden_size)
r_out, (h_n, h_c) = self.rnn(x, None) # None 表示 hidden state 会用全0的 state
# 选取最后一个时间点的 r_out 输出
# 这里 r_out[:, -1, :] 的值也是 h_n 的值
out = self.out(r_out[:, -1, :])
return out
rnn = RNN()
print(rnn)
# RNN 训练
optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)
loss_func = nn.CrossEntropyLoss()
# training
for epoch in range(EPOCH):
for step, (x , b_y) in enumerate(train_loader): # gives batch data
b_x = x.view(-1,28,28) # reshape x to (batch, time_step, input_size)
output = rnn(b_x) # rnn output
loss = loss_func(output, b_y) # cross entropy loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % 50 == 0:
test_output = rnn(test_x) # (samples, time_step, input_size)
pred_y = torch.max(test_output, 1)[1].data.numpy()
accuracy = float((pred_y == test_y).astype(int).sum()) / float(test_y.size)
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
## testing
test_output = rnn(test_x[:15].view(-1, 28, 28))
pred_y = torch.max(test_output, 1)[1].data.numpy()
print(pred_y, 'prediction number')
print(test_y[:10], 'real number')